- [x] PR title:
community: Add OCI Generative AI new model support
- [x] PR message:
- Description: adding support for new models offered by OCI Generative
AI services. This is a moderate update of our initial integration PR
16548 and includes a new integration for our chat models under
/langchain_community/chat_models/oci_generative_ai.py
- Issue: NA
- Dependencies: No new Dependencies, just latest version of our OCI sdk
- Twitter handle: NA
- [x] Add tests and docs:
1. we have updated our unit tests
2. we have updated our documentation including a new ipynb for our new
chat integration
- [x] Lint and test:
`make format`, `make lint`, and `make test` run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
** Description**
This is the community integration of ZenGuard AI - the fastest
guardrails for GenAI applications. ZenGuard AI protects against:
- Prompts Attacks
- Veering of the pre-defined topics
- PII, sensitive info, and keywords leakage.
- Toxicity
- Etc.
**Twitter Handle** : @zenguardai
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added an integration test
2. Added colab
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.
---------
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
They are now rejecting with code 401 calls from users with expired or
invalid tokens (while before they were being considered anonymous).
Thus, the authorization header has to be removed when there is no token.
Related to: #23178
---------
Signed-off-by: Joffref <mariusjoffre@gmail.com>
minor changes to module import error handling and minor issues in
tutorial documents.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- Fix bug with TypedDicts rendering inherited methods if inherting from
typing_extensions.TypedDict rather than typing.TypedDict
- Do not surface inherited pydantic methods for subclasses of BaseModel
- Subclasses of RunnableSerializable will not how methods inherited from
Runnable or from BaseModel
- Subclasses of Runnable that not pydantic models will include a link to
RunnableInterface (they still show inherited methods, we can fix this
later)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Description: Update Rag tutorial notebook so it includes an additional
notebook cell with pip installs of required langchain_chroma and
langchain_community.
This fixes the issue with the rag tutorial gives you a 'missing modules'
error if you run code in the notebook as is.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** sambanova sambaverse integration improvement: removed
input parsing that was changing raw user input, and was making to use
process prompt parameter as true mandatory
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
```SemanticChunker``` currently provide three methods to split the texts semantically:
- percentile
- standard_deviation
- interquartile
I propose new method ```gradient```. In this method, the gradient of distance is used to split chunks along with the percentile method (technically) . This method is useful when chunks are highly correlated with each other or specific to a domain e.g. legal or medical. The idea is to apply anomaly detection on gradient array so that the distribution become wider and easy to identify boundaries in highly semantic data.
I have tested this merge on a set of 10 domain specific documents (mostly legal).
Details :
- **Issue:** Improvement
- **Dependencies:** NA
- **Twitter handle:** [x.com/prajapat_ravi](https://x.com/prajapat_ravi)
@hwchase17
---------
Co-authored-by: Raviraj Prajapat <raviraj.prajapat@sirionlabs.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Add chat history store based on Kafka.
Files added:
`libs/community/langchain_community/chat_message_histories/kafka.py`
`docs/docs/integrations/memory/kafka_chat_message_history.ipynb`
New issue to be created for future improvement:
1. Async method implementation.
2. Message retrieval based on timestamp.
3. Support for other configs when connecting to cloud hosted Kafka (e.g.
add `api_key` field)
4. Improve unit testing & integration testing.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Langchain is very popular among developers in China, but there are still
no good Chinese books or documents, so I want to add my own Chinese
resources on langchain topics, hoping to give Chinese readers a better
experience using langchain. This is not a translation of the official
langchain documentation, but my understanding.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:** This PR adds a chat model integration for [Snowflake
Cortex](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions),
which gives an instant access to industry-leading large language models
(LLMs) trained by researchers at companies like Mistral, Reka, Meta, and
Google, including [Snowflake
Arctic](https://www.snowflake.com/en/data-cloud/arctic/), an open
enterprise-grade model developed by Snowflake.
**Dependencies:** Snowflake's
[snowpark](https://pypi.org/project/snowflake-snowpark-python/) library
is required for using this integration.
**Twitter handle:** [@gethouseware](https://twitter.com/gethouseware)
- [x] **Add tests and docs**:
1. integration tests:
`libs/community/tests/integration_tests/chat_models/test_snowflake.py`
2. unit tests:
`libs/community/tests/unit_tests/chat_models/test_snowflake.py`
3. example notebook: `docs/docs/integrations/chat/snowflake.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/