Commit Graph

7510 Commits

Author SHA1 Message Date
ccurme
50b48fa1ff chore(openai): bump minimum core version (#32795) 2025-09-02 14:06:49 -04:00
Chester Curme
a54f4385f8 Merge branch 'master' into wip-v1.0
# Conflicts:
#	libs/langchain_v1/langchain/__init__.py
2025-09-02 13:17:00 -04:00
ccurme
b999f356e8 fix(langchain): update __init__ version (#32793) 2025-09-02 13:14:42 -04:00
ccurme
98e4e7d043 Merge branch 'master' into wip-v1.0 2025-09-02 13:06:35 -04:00
ccurme
2cf5c52c13 release(core): 1.0.0a2 (#32792) 2025-09-02 12:55:52 -04:00
Sydney Runkle
062196a7b3 release(langchain): v1.0.0a3 (#32791) 2025-09-02 12:29:14 -04:00
ccurme
bf41a75073 release(openai): 1.0.0a2 (#32790) 2025-09-02 12:22:57 -04:00
Sydney Runkle
dc9f941326 chore(langchain): rename create_react_agent -> create_agent (#32789) 2025-09-02 12:13:12 -04:00
ccurme
e15c41233d feat(openai): (v1) update default output_version (#32674) 2025-09-02 12:12:41 -04:00
Mason Daugherty
25d5db88d5 fix: ci 2025-09-01 23:36:38 -05:00
Mason Daugherty
5c8837ea5a fix some imports 2025-09-01 23:27:37 -05:00
Mason Daugherty
9a3ba71636 fix: version equality CI check 2025-09-01 23:24:04 -05:00
Mason Daugherty
00def6da72 rfc: remove unused TypeGuards 2025-09-01 23:13:18 -05:00
Mason Daugherty
4f8cced3b6 chore: move convert_to_openai_data_block and convert_to_openai_image_block from content.py to openai block translators 2025-09-01 23:08:47 -05:00
Mason Daugherty
365d7c414b nit: OpenAI docstrings 2025-09-01 20:30:56 -05:00
Mason Daugherty
a4874123a0 chore: move _convert_openai_format_to_data_block from langchain_v0 to openai 2025-09-01 19:39:15 -05:00
Mason Daugherty
a5f92fdd9a fix: update some docstrings and typing 2025-09-01 19:25:08 -05:00
Mason Daugherty
431e6d6211 chore(standard-tests): drop python 3.9 (#32772) 2025-08-31 18:23:10 -05:00
Mason Daugherty
0f1afa178e chore(text-splitters): drop python 3.9 support (#32771) 2025-08-31 18:13:35 -05:00
Mason Daugherty
830d1a207c Merge branch 'master' into wip-v1.0 2025-08-31 18:01:24 -05:00
Mason Daugherty
6b5fdfb804 release(text-splitters): 0.3.11 (#32770)
Fixes #32747

SpaCy integration test fixture was trying to use pip to download the
SpaCy language model (`en_core_web_sm`), but uv-managed environments
don't include pip by default. Fail test if not installed as opposed to
downloading.
2025-08-31 23:00:05 +00:00
Ravirajsingh Sodha
b42dac5fe6 docs: standardize OllamaLLM and BaseOpenAI docstrings (#32758)
- Add comprehensive docstring following LangChain standards
- Include Setup, Key init args, Instantiate, Invoke, Stream, and Async
sections
- Provide detailed parameter descriptions and code examples
- Fix linting issues for code formatting compliance

Contributes to #24803

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-08-31 17:45:56 -05:00
Christophe Bornet
e0a4af8d8b docs(text-splitters): fix some docstrings (#32767) 2025-08-31 13:46:11 -05:00
Rémy HUBSCHER
fcf7175392 chore(langchain): improve PostgreSQL Manager upsert SQLAlchemy API calls. (#32748)
- Make explicit the `constraint` parameter name to avoid mixing it with
`index_elements`
[[Documentation](https://docs.sqlalchemy.org/en/20/dialects/postgresql.html#sqlalchemy.dialects.postgresql.Insert.on_conflict_do_update)]
- ~Fallback on the existing `group_id` row value, to avoid setting it to
`None`.~
2025-08-30 14:13:24 -05:00
Mason Daugherty
b494a3c57b chore(cli): drop python 3.9 support (#32761) 2025-08-30 13:25:33 -05:00
Mason Daugherty
f088fac492 Merge branch 'master' into wip-v1.0 2025-08-30 14:21:37 -04:00
Mason Daugherty
2dc89a2ae7 release(cli): 0.0.37 (#32760)
It's been a minute. Final release prior to dropping Python 3.9 support.
2025-08-30 13:07:55 -05:00
Christophe Bornet
e3c4aeaea1 chore(cli): add mypy strict checking (#32386)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-08-30 13:02:45 -05:00
Christophe Bornet
8a1419dad1 chore(cli): add ruff rules ANN401 and D1 (#32576) 2025-08-30 12:41:16 -05:00
Caspar Broekhuizen
37aff0a153 chore: bump langchain-core minimum to 0.3.75 (#32753)
Update `langchain-core` dependency min from `>=0.3.63` to `>=0.3.75`.

### Motivation
- We located the `langchain-core` package locally in the monorepo and
need to align `langchain-tests` with the new minimum version.
2025-08-29 14:11:28 -04:00
Caspar Broekhuizen
a163d59988 chore(standard-tests): relax langchain-core bounds for langchain-tests 1.0.0a1 (#32752)
### Overview
Preparing the `1.0.0a1` release of `langchain-tests` to align with
`langchain-core` version `1.0.0a1`.

### Changes
- Bump package version to `1.0.0a1`
- Relax `langchain-core` requirement from `<1.0.0,>=0.3.63` to
`<2.0.0,>=0.3.63`

### Motivation
All main LangChain packages are now publishing `1.0.0a` prereleases.  
`langchain-tests` needs a matching prerelease so downstreams can install
tests alongside the 1.0 series without conflicts.

### Tests
- Verified installation and tests against both `0.3.75` and `1.0.0a1`.
2025-08-29 13:46:48 -04:00
Mason Daugherty
925ad65df9 fix(core): typo in content.py 2025-08-28 15:17:51 -04:00
Mason Daugherty
e09d90b627 Merge branch 'master' into wip-v1.0 2025-08-28 14:11:24 -04:00
Sydney Runkle
b26e52aa4d chore(text-splitters): bump version of core (#32740) 2025-08-28 13:14:57 -04:00
Sydney Runkle
38cdd7a2ec chore(text-splitters): relax max bound for langchain-core (#32739) 2025-08-28 13:05:47 -04:00
Sydney Runkle
26e5d1302b chore(langchain): remove upper bound at v1 for core (#32737) 2025-08-28 12:14:42 -04:00
ccurme
ddde1eff68 fix: openai, anthropic (v1) fix core lower bound (#32724) 2025-08-27 14:36:10 -04:00
ccurme
9b576440ed release: anthropic, openai 1.0.0a1 (#32723) 2025-08-27 14:12:28 -04:00
Sydney Runkle
7f9b0772fc chore(langchain): also bump text splitters (#32722) 2025-08-27 18:09:57 +00:00
Sydney Runkle
d6e618258f chore(langchain): use latest core (#32720) 2025-08-27 14:06:07 -04:00
Sydney Runkle
806bc593ab chore(langchain): revert back to static versioning for now (#32719) 2025-08-27 13:54:41 -04:00
Sydney Runkle
047bcbaa13 release(langchain): v1.0.0a1 (#32718)
Also removing globals usage + static version
2025-08-27 13:46:20 -04:00
Sydney Runkle
18db07c292 feat(langchain): revamped create_react_agent (#32705)
Adding `create_react_agent` and introducing `langchain.agents`!

## Enhanced Structured Output

`create_react_agent` supports coercion of outputs to structured data
types like `pydantic` models, dataclasses, typed dicts, or JSON schemas
specifications.

### Structural Changes

In langgraph < 1.0, `create_react_agent` implemented support for
structured output via an additional LLM call to the model after the
standard model / tool calling loop finished. This introduced extra
expense and was unnecessary.

This new version implements structured output support in the main loop,
allowing a model to choose between calling tools or generating
structured output (or both).

The same basic pattern for structured output generation works:

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent("openai:gpt-4o-mini", tools=[weather_tool], response_format=Weather)
print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

### Advanced Configuration

The new API exposes two ways to configure how structured output is
generated. Under the hood, LangChain will attempt to pick the best
approach if not explicitly specified. That is, if provider native
support is available for a given model, that takes priority over
artificial tool calling.

1. Artificial tool calling (the default for most models)

LangChain generates a tool (or tools) under the hood that match the
schema of your response format. When the model calls those tools,
LangChain coerces the args to the desired format. Note, LangChain does
not validate outputs adhering to JSON schema specifications.

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ToolStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather, tool_message_content="Final Weather result generated"
    ),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_Gg933BMHMwck50Q39dtBjXm7)
 Call ID: call_Gg933BMHMwck50Q39dtBjXm7
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================
Tool Calls:
  Weather (call_9xOkYUM7PuEXl9DQq9sWGv5l)
 Call ID: call_9xOkYUM7PuEXl9DQq9sWGv5l
  Args:
    temperature: 70
    condition: sunny
================================= Tool Message =================================
Name: Weather

Final Weather result generated
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

</details>

2. Provider implementations (limited to OpenAI, Groq)

Some providers support structured output generating directly. For those
cases, we offer the `ProviderStrategy` hint:

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ProviderStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ProviderStrategy(Weather),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_OFJq1FngIXS6cvjWv5nfSFZp)
 Call ID: call_OFJq1FngIXS6cvjWv5nfSFZp
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================

{"temperature":70,"condition":"sunny"}
Weather(temperature=70.0, condition='sunny')
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

Note! The final tool message has the custom content provided by the dev.

</details>

Prompted output was previously supported and is no longer supported via
the `response_format` argument to `create_react_agent`. If there's
significant demand for this, we'd be happy to engineer a solution.

## Error Handling

`create_react_agent` now exposes an API for managing errors associated
with structured output generation. There are two common problems with
structured output generation (w/ artificial tool calling):

1. **Parsing error** -- the model generates data that doesn't match the
desired structure for the output
2. **Multiple tool calls error** -- the model generates 2 or more tool
calls associated with structured output schemas

A developer can control the desired behavior for this via the
`handle_errors` arg to `ToolStrategy`.

<details>
<summary>Extended example</summary>

```py
from langchain_core.messages import HumanMessage
from pydantic import BaseModel

from langchain.agents import create_react_agent
from langchain.agents.structured_output import StructuredOutputValidationError, ToolStrategy


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""
    return f"it's sunny and 70 degrees in {city}"


def handle_validation_error(error: Exception) -> str:
    if isinstance(error, StructuredOutputValidationError):
        return (
            f"Please call the {error.tool_name} call again with the correct arguments. "
            f"Your mistake was: {error.source}"
        )
    raise error


agent = create_react_agent(
    "openai:gpt-5",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather,
        handle_errors=handle_validation_error,
    ),
)
```

</details>

## Error Handling for Tool Calling

Tools fail for two main reasons:

1. **Invocation failure** -- the args generated by the model for the
tool are incorrect (missing, incompatible data types, etc)
2. **Execution failure** -- the tool execution itself fails due to a
developer error, network error, or some other exception.

By default, when tool **invocation** fails, the react agent will return
an artificial `ToolMessage` to the model asking it to correct its
mistakes and retry.

Now, when tool **execution** fails, the react agent raises the
`ToolException` by default instead of asking the model to retry. This
helps to avoid looping that should be avoided due to the aforementioned
issues.

Developers can configure their desired behavior for retries / error
handling via the `handle_tool_errors` arg to `ToolNode`.

## Pre-Bound Models

`create_react_agent` no longer supports inputs to `model` that have been
pre-bound w/ tools or other configuration. To properly support
structured output generation, the agent itself needs the power to bind
tools + structured output kwargs.

This also makes the devx cleaner - it's always expected that `model` is
an instance of `BaseChatModel` (or `str` that we coerce into a chat
model instance).

Dynamic model functions can return a pre-bound model **IF** structured
output is not also used. Dynamic model functions can then bind tools /
structured output logic.

## Import Changes

Users should now use `create_react_agent` from `langchain.agents`
instead of `langgraph.prebuilts`.
Other imports have a similar migration path, `ToolNode` and `AgentState`
for example.

* `chat_agent_executor.py` -> `react_agent.py`

Some notes:
1. Disabled blockbuster + some linting in `langchain/agents` -- beyond
ideal, but necessary to get this across the line for the alpha. We
should re-enable before official release.
2025-08-27 17:32:21 +00:00
ccurme
72b66fcca5 release(core): 1.0.0a1 (#32715) 2025-08-27 11:57:07 -04:00
ccurme
a47d993ddd release(core): 1.0.0dev0 (#32713) 2025-08-27 11:05:39 -04:00
ccurme
cb4705dfc0 chore: (v1) drop support for python 3.9 (#32712)
EOL in October

Will update ruff / formatting closer to 1.0 release to minimize merge
conflicts on branch
2025-08-27 10:42:49 -04:00
ccurme
9a9263a2dd fix(langchain): (v1) delete unused chains (#32711)
Merge conflict was not resolved correctly
2025-08-27 10:17:14 -04:00
Chester Curme
e4b69db4cf Merge branch 'master' into wip-v1.0
# Conflicts:
#	libs/langchain_v1/langchain/chains/documents/map_reduce.py
#	libs/langchain_v1/langchain/chains/documents/stuff.py
2025-08-27 09:37:21 -04:00
Mason Daugherty
242881562b feat: standard content, IDs, translators, & normalization (#32569) 2025-08-27 09:31:12 -04:00
Sydney Runkle
1fe2c4084b chore(langchain): remove untested chains for first alpha (#32710)
Also removing globals.py file
2025-08-27 08:24:43 -04:00