Commit Graph

74 Commits

Author SHA1 Message Date
Christophe Bornet
cc98fb9bee chore(core): add ruff rule PLC0415 (#32351)
See https://docs.astral.sh/ruff/rules/import-outside-top-level/

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 14:15:04 -04:00
Christophe Bornet
16420cad71 chore(core): fix some pydocs to use google-style (#32764)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 17:52:17 +00:00
Christophe Bornet
f4e83e0ad8 chore(core): fix some docstrings (from DOC preview rule) (#32833)
* Add `Raises` sections
* Add `Returns` sections
* Add `Yields` sections

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-08 15:44:15 +00:00
Mason Daugherty
c31236264e chore: formatting across codebase (#32466) 2025-08-08 10:20:10 -04:00
Jacob Lee
535ba43b0d feat(core): add an option to make deserialization more permissive (#32054)
## Description

Currently when deserializing objects that contain non-deserializable
values, we throw an error. However, there are cases (e.g. proxies that
return response fields containing extra fields like Python datetimes),
where these values are not important and we just want to drop them.

Twitter handle: @hacubu

---------

Co-authored-by: Mason Daugherty <github@mdrxy.com>
2025-07-15 17:00:01 -04:00
Christophe Bornet
03e8327e01 core: Ruff preview fixes (#31877)
Auto-fixes from `uv run ruff check --fix --unsafe-fixes --preview`

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-07-07 13:02:40 -04:00
Christophe Bornet
a8f2ddee31 core: Add ruff rules RUF (#29353)
See https://docs.astral.sh/ruff/rules/#ruff-specific-rules-ruf
Mostly:
* [RUF022](https://docs.astral.sh/ruff/rules/unsorted-dunder-all/)
(unsorted `__all__`)
* [RUF100](https://docs.astral.sh/ruff/rules/unused-noqa/) (unused noqa)
*
[RUF021](https://docs.astral.sh/ruff/rules/parenthesize-chained-operators/)
(parenthesize-chained-operators)
*
[RUF015](https://docs.astral.sh/ruff/rules/unnecessary-iterable-allocation-for-first-element/)
(unnecessary-iterable-allocation-for-first-element)
*
[RUF005](https://docs.astral.sh/ruff/rules/collection-literal-concatenation/)
(collection-literal-concatenation)
* [RUF046](https://docs.astral.sh/ruff/rules/unnecessary-cast-to-int/)
(unnecessary-cast-to-int)

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2025-05-15 15:43:57 -04:00
Bagatur
d4fc734250 core[patch]: update dict prompt template (#30967)
Align with JS changes made in
https://github.com/langchain-ai/langchainjs/pull/8043
2025-04-23 10:04:50 -07:00
Sydney Runkle
75e50a3efd core[patch]: Raise AttributeError (instead of ModuleNotFoundError) in custom __getattr__ (#30905)
Follow up to https://github.com/langchain-ai/langchain/pull/30769,
fixing the regression reported
[here](https://github.com/langchain-ai/langchain/pull/30769#issuecomment-2807483610),
thanks @krassowski for the report!

Fix inspired by https://github.com/PrefectHQ/prefect/pull/16172/files

Other changes:
* Using tuples for `__all__`, except in `output_parsers` bc of a list
namespace conflict
* Using a helper function for imports due to repeated logic across
`__init__.py` files becoming hard to maintain.

Co-authored-by: Michał Krassowski < krassowski 5832902+krassowski@users.noreply.github.com>"
2025-04-17 14:15:28 -04:00
Sydney Runkle
1f5e207379 core[fix]: remove load from dynamic imports dict (#30849) 2025-04-15 12:02:46 -04:00
Sydney Runkle
6aa5494a75 Fix from langchain_core.load.load import load import (#30843)
TL;DR: you can't optimize imports with a lazy `__getattr__` if there is
a namespace conflict with a module name and an attribute name. We should
avoid introducing conflicts like this in the future.

This PR fixes a bug introduced by my lazy imports PR:
https://github.com/langchain-ai/langchain/pull/30769.

In `langchain_core`, we have utilities for loading and dumping data.
Unfortunately, one of those utilities is a `load` function, located in
`langchain_core/load/load.py`. To make this function more visible, we
make it accessible at the top level `langchain_core.load` module via
importing the function in `langchain_core/load/__init__.py`.

So, either of these imports should work:

```py
from langchain_core.load import load
from langchain_core.load.load import load
```

As you can tell, this is already a bit confusing. You'd think that the
first import would produce the module `load`, but because of the
`__init__.py` shortcut, both produce the function `load`.

<details> More on why the lazy imports PR broke this support...

All was well, except when the absolute import was run first, see the
last snippet:

```
>>> from langchain_core.load import load
>>> load
<function load at 0x101c320c0>
```

```
>>> from langchain_core.load.load import load
>>> load
<function load at 0x1069360c0>
```

```
>>> from langchain_core.load import load
>>> load
<function load at 0x10692e0c0>
>>> from langchain_core.load.load import load
>>> load
<function load at 0x10692e0c0>
```

```
>>> from langchain_core.load.load import load
>>> load
<function load at 0x101e2e0c0>
>>> from langchain_core.load import load
>>> load
<module 'langchain_core.load.load' from '/Users/sydney_runkle/oss/langchain/libs/core/langchain_core/load/load.py'>
```

In this case, the function `load` wasn't stored in the globals cache for
the `langchain_core.load` module (by the lazy import logic), so Python
defers to a module import.

</details>

New `langchain` tongue twister 😜: we've created a problem for ourselves
because you have to load the load function from the load file in the
load module 😨.
2025-04-15 11:06:13 -04:00
Sydney Runkle
edb6a23aea core[lint]: fix issue with unused ignore in __init__.py files (#30825)
Fixing a race condition between
https://github.com/langchain-ai/langchain/pull/30769 and
https://github.com/langchain-ai/langchain/pull/30737
2025-04-14 17:57:00 +00:00
Sydney Runkle
4f69094b51 core[performance]: use custom __getattr__ in __init__.py files for lazy imports (#30769)
Most easily reviewed with the "hide whitespace" option toggled.

Seeing 10-50% speed ups in import time for common structures 🚀 

The general purpose of this PR is to lazily import structures within
`langchain_core.XXX_module.__init__.py` so that we're not eagerly
importing expensive dependencies (`pydantic`, `requests`, etc).

Analysis of flamegraphs generated with `importtime` motivated these
changes. For example, the one below demonstrates that importing
`HumanMessage` accidentally triggered imports for `importlib.metadata`,
`requests`, etc.

There's still much more to do on this front, and we can start digging
into our own internal code for optimizations now that we're less
concerned about external imports.

<img width="1210" alt="Screenshot 2025-04-11 at 1 10 54 PM"
src="https://github.com/user-attachments/assets/112a3fe7-24a9-4294-92c1-d5ae64df839e"
/>

I've tracked the improvements with some local benchmarks:

## `pytest-benchmark` results

| Name | Before (s) | After (s) | Delta (s) | % Change |

|-----------------------------|------------|-----------|-----------|----------|
| Document | 2.8683 | 1.2775 | -1.5908 | -55.46% |
| HumanMessage | 2.2358 | 1.1673 | -1.0685 | -47.79% |
| ChatPromptTemplate | 5.5235 | 2.9709 | -2.5526 | -46.22% |
| Runnable | 2.9423 | 1.7793 | -1.163 | -39.53% |
| InMemoryVectorStore | 3.1180 | 1.8417 | -1.2763 | -40.93% |
| RunnableLambda | 2.7385 | 1.8745 | -0.864 | -31.55% |
| tool | 5.1231 | 4.0771 | -1.046 | -20.42% |
| CallbackManager | 4.2263 | 3.4099 | -0.8164 | -19.32% |
| LangChainTracer | 3.8394 | 3.3101 | -0.5293 | -13.79% |
| BaseChatModel | 4.3317 | 3.8806 | -0.4511 | -10.41% |
| PydanticOutputParser | 3.2036 | 3.2995 | 0.0959 | 2.99% |
| InMemoryRateLimiter | 0.5311 | 0.5995 | 0.0684 | 12.88% |

Note the lack of change for `InMemoryRateLimiter` and
`PydanticOutputParser` is just random noise, I'm getting comparable
numbers locally.

## Local CodSpeed results

We're still working on configuring CodSpeed on CI. The local usage
produced similar results.
2025-04-14 08:57:54 -04:00
Christophe Bornet
913c896598 core: Add ruff rules FBT001 and FBT002 (#30695)
Add ruff rules
[FBT001](https://docs.astral.sh/ruff/rules/boolean-type-hint-positional-argument/)
and
[FBT002](https://docs.astral.sh/ruff/rules/boolean-default-value-positional-argument/).
Mostly `noqa`s to not introduce breaking changes and possible
non-breaking fixes have already been done in a [previous
PR](https://github.com/langchain-ai/langchain/pull/29424).
These rules will prevent new violations to happen.
2025-04-11 16:26:33 -04:00
Sydney Runkle
3814bd1ea7 partners: Add Perplexity Chat Integration (#30618)
Perplexity's importance in the space has been growing, so we think it's
time to add an official integration!

Note: following the release of `langchain-perplexity` to `pypi`, we
should be able to add `perplexity` as an extra in
`libs/langchain/pyproject.toml`, but we're blocked by a circular import
for now.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-04-03 16:09:14 +00:00
Christophe Bornet
f241fd5c11 core: Add ruff rules RET (#29384)
See https://docs.astral.sh/ruff/rules/#flake8-return-ret
All auto-fixes
2025-04-02 16:59:56 -04:00
Christophe Bornet
768e4f695a core: Add ruff rules S110 and S112 (#30599) 2025-04-01 13:17:22 -04:00
Christophe Bornet
88b4233fa1 core: Add ruff rules D (docstring) (#29406)
This ensures that the code is properly documented:
https://docs.astral.sh/ruff/rules/#pydocstyle-d

Related to #21983
2025-04-01 13:15:45 -04:00
ccurme
0c623045b5 core[patch]: pydantic 2.11 compat (#30554)
Release notes: https://pydantic.dev/articles/pydantic-v2-11-release

Covered here:

- We no longer access `model_fields` on class instances (that is now
deprecated);
- Update schema normalization for Pydantic version testing to reflect
changes to generated JSON schema (addition of `"additionalProperties":
True` for dict types with value Any or object).

## Considerations:

### Changes to JSON schema generation

#### Tool-calling / structured outputs

This may impact tool-calling + structured outputs for some providers,
but schema generation only changes if you have parameters of the form
`dict`, `dict[str, Any]`, `dict[str, object]`, etc. If dict parameters
are typed my understanding is there are no changes.

For OpenAI for example, untyped dicts work for structured outputs with
default settings before and after updating Pydantic, and error both
before/after if `strict=True`.

### Use of `model_fields`

There is one spot where we previously accessed `super(cls,
self).model_fields`, where `cls` is an object in the MRO. This was done
for the purpose of tracking aliases in secrets. I've updated this to
always be `type(self).model_fields`-- see comment in-line for detail.

---------

Co-authored-by: Sydney Runkle <54324534+sydney-runkle@users.noreply.github.com>
2025-03-31 14:22:57 -04:00
Christophe Bornet
e181d43214 core: Bump ruff version to 0.11 (#30519)
Changes are from the new TC006 rule:
https://docs.astral.sh/ruff/rules/runtime-cast-value/
TC006 is auto-fixed.
2025-03-27 13:01:49 -04:00
Jacob Lee
e9c1765967 fix(core): Ignore missing secrets on deserialization (#30252) 2025-03-13 12:27:03 -07:00
ccurme
b1a7f4e106 core, openai[patch]: support serialization of pydantic models in messages (#29940)
Resolves https://github.com/langchain-ai/langchain/issues/29003,
https://github.com/langchain-ai/langchain/issues/27264
Related: https://github.com/langchain-ai/langchain-redis/issues/52

```python
from langchain.chat_models import init_chat_model
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from pydantic import BaseModel

cache = SQLiteCache()

set_llm_cache(cache)

class Temperature(BaseModel):
    value: int
    city: str

llm = init_chat_model("openai:gpt-4o-mini")
structured_llm = llm.with_structured_output(Temperature)
```
```python
# 681 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
```python
# 6.98 ms
response = structured_llm.invoke("What is the average temperature of Rome in May?")
```
2025-02-24 09:34:27 -05:00
Jorge Piedrahita Ortiz
3acf842e35 core: add sambanova chat models to load module mapping (#29855)
- **Description:** add sambanova integration package chat models to load
module mapping, to allow serialization and deserialization
2025-02-20 12:30:50 -05:00
Christophe Bornet
1c4ce7b42b core: Auto-fix some docstrings (#29337) 2025-01-21 13:29:53 -05:00
Vadym Barda
48ee322a78 partners: add xAI chat integration (#28032) 2024-11-12 15:11:29 -05:00
Tibor Reiss
20b56a0233 core[patch]: fix repr and str for Serializable (#26786)
Fixes #26499

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-10-24 08:36:35 -07:00
Christophe Bornet
d31ec8810a core: Add ruff rules for error messages (EM) (#26965)
All auto-fixes

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-10-07 22:12:28 +00:00
Christophe Bornet
7809b31b95 core[patch]: Add ruff rules for flake8-simplify (SIM) (#26848)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-27 20:13:23 +00:00
Christophe Bornet
3a1b9259a7 core: Add ruff rules for comprehensions (C4) (#26829) 2024-09-25 09:34:17 -04:00
Bagatur
f7bb3640f1 core[patch]: support js chat model namespaces (#26688) 2024-09-19 16:14:20 -07:00
Piyush Jain
f087ab43fd core[patch]: Fix load of ChatBedrock (#26679)
Complementary PR to master for #26643.

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-09-19 21:57:20 +00:00
Bagatur
409f35363b core[patch]: support load from path for default namespaces (#26675) 2024-09-19 14:47:27 -07:00
Christophe Bornet
a47b332841 core: Put Python version as a project requirement so it is considered by ruff (#26608)
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.

Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:

Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```

Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-09-18 14:37:57 +00:00
Erick Friis
c2a3021bb0 multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00
langchain-infra
8a02fd9c01 core: add additional import mappings to loads (#26406)
Support using additional import mapping. This allows users to override
old mappings/add new imports to the loads function.

- [x ] **Add tests and docs**: If you're adding a new integration,
please include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-09-13 09:39:58 -07:00
Bagatur
dba308447d fmt 2024-09-04 11:28:04 -07:00
Bagatur
576574c82c fmt 2024-09-04 11:05:36 -07:00
Bagatur
d19e074374 core[patch]: handle serializable fields that cant be converted to bool (#25903) 2024-09-01 16:44:33 -07:00
Bagatur
6eb42c657e core[patch]: Remove default BaseModel init docstring (#25009)
Currently a default init docstring gets appended to the class docstring
of every BaseModel inherited object. This removes the default init
docstring.

![Screenshot 2024-08-02 at 5 09 55
PM](https://github.com/user-attachments/assets/757fe4ae-a793-4e7d-8354-512de2c06818)
2024-08-06 01:04:04 +00:00
Bagatur
e81ddb32a6 docs: fix kwargs docstring (#25010)
Fix:
![Screenshot 2024-08-02 at 5 33 37
PM](https://github.com/user-attachments/assets/7c56cdeb-ee81-454c-b3eb-86aa8a9bdc8d)
2024-08-02 19:54:54 -07:00
Leonid Ganeline
77f5fc3d55 core: docstrings load (#23787)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:23:19 -04:00
Bagatur
a0c2281540 infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
Vadym Barda
e8d77002ea core: add RemoveMessage (#23636)
This change adds a new message type `RemoveMessage`. This will enable
`langgraph` users to manually modify graph state (or have the graph
nodes modify the state) to remove messages by `id`

Examples:

* allow users to delete messages from state by calling

```python
graph.update_state(config, values=[RemoveMessage(id=state.values[-1].id)])
```

* allow nodes to delete messages

```python
graph.add_node("delete_messages", lambda state: [RemoveMessage(id=state[-1].id)])
```
2024-06-28 14:40:02 -07:00
ChrisDEV
cb6cf4b631 Fix return value type of dumpd (#20123)
The return type of `json.loads` is `Any`.

In fact, the return type of `dumpd` must be based on `json.loads`, so
the correction here is understandable.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-20 16:31:41 +00:00
Eugene Yurtsev
ae4c0ed25a core[patch]: Add documentation to load namespace (#23143)
Document some of the modules within the load namespace
2024-06-19 15:21:41 +00:00
Nuno Campos
6f17158606 fix: core: Include in json output also fields set outside the constructor (#21342) 2024-05-06 14:37:36 -07:00
Erick Friis
66fb0b1f35 core: fix fireworks mapping (#20613) 2024-04-18 18:08:40 +00:00
Erick Friis
e395115807 docs: aws docs updates (#20571) 2024-04-17 23:32:00 +00:00
Erick Friis
e7fe5f7d3f anthropic[patch]: serialization in partner package (#18828) 2024-04-16 16:05:58 -07:00
ccurme
21c1ce0bc1 update agents to use tool call messages (#20074)
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant"),
        MessagesPlaceholder("chat_history", optional=True),
        ("human", "{input}"),
        MessagesPlaceholder("agent_scratchpad"),
    ]
)
model = ChatAnthropic(model="claude-3-opus-20240229")

@tool
def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2

tools = [magic_function]

agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...

Invoking: `magic_function` with `{'input': 3}`
responded: [{'text': '<thinking>\nThe user has asked for the value of magic_function applied to the input 3. Looking at the available tools, magic_function is the relevant one to use here, as it takes an integer input and returns an integer output.\n\nThe magic_function has one required parameter:\n- input (integer)\n\nThe user has directly provided the value 3 for the input parameter. Since the required parameter is present, we can proceed with calling the function.\n</thinking>', 'type': 'text'}, {'id': 'toolu_01HsTheJPA5mcipuFDBbJ1CW', 'input': {'input': 3}, 'name': 'magic_function', 'type': 'tool_use'}]

5
Therefore, the value of magic_function(3) is 5.

> Finished chain.
{'input': 'what is the value of magic_function(3)?',
 'output': 'Therefore, the value of magic_function(3) is 5.'}
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-10 11:54:51 -04:00