- **Description:** Add Riza Python/JS code execution tool
- **Issue:** N/A
- **Dependencies:** an optional dependency on the `rizaio` pypi package
- **Twitter handle:** [@rizaio](https://x.com/rizaio)
[Riza](https://riza.io) is a safe code execution environment for
agent-generated Python and JavaScript that's easy to integrate into
langchain apps. This PR adds two new tool classes to the community
package.
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
- **Twitter handle:** Andre_Q_Pereira
---------
Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Fixing the way users have to import Arxiv and
Semantic Scholar
- **Issue:** Changed to use `from langchain_community.tools.arxiv import
ArxivQueryRun` instead of `from langchain_community.tools.arxiv.tool
import ArxivQueryRun`
- **Dependencies:** None
- **Twitter handle:** Nope
Thank you for contributing to LangChain!
- [x] **PR title**: "community: update docs and add tool to init.py"
- [x] **PR message**:
- **Description:** Fixed some errors and comments in the docs and added
our ZenGuardTool and additional classes to init.py for easy access when
importing
- **Question:** when will you update the langchain-community package in
pypi to make our tool available?
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for review!
---------
Co-authored-by: Baur <baur.krykpayev@gmail.com>
** Description**
This is the community integration of ZenGuard AI - the fastest
guardrails for GenAI applications. ZenGuard AI protects against:
- Prompts Attacks
- Veering of the pre-defined topics
- PII, sensitive info, and keywords leakage.
- Toxicity
- Etc.
**Twitter Handle** : @zenguardai
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added an integration test
2. Added colab
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.
---------
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>
This change adds args_schema (pydantic BaseModel) to SearxSearchRun for
correct schema formatting on LLM function calls
Issue: currently using SearxSearchRun with OpenAI function calling
returns the following error "TypeError: SearxSearchRun._run() got an
unexpected keyword argument '__arg1' ".
This happens because the schema sent to the LLM is "input:
'{"__arg1":"foobar"}'" while the method should be called with the
"query" parameter.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** A very small fix in the Docstring of
`DuckDuckGoSearchResults` identified in the following issue.
- **Issue:** #22961
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
They cause `poetry lock` to take a ton of time, and `uv pip install` can
resolve the constraints from these toml files in trivial time
(addressing problem with #19153)
This allows us to properly upgrade lockfile dependencies moving forward,
which revealed some issues that were either fixed or type-ignored (see
file comments)
This PR adds support for using Databricks Unity Catalog functions as
LangChain tools, which runs inside a Databricks SQL warehouse.
* An example notebook is provided.
Description: This change adds args_schema (pydantic BaseModel) to
WikipediaQueryRun for correct schema formatting on LLM function calls
Issue: currently using WikipediaQueryRun with OpenAI function calling
returns the following error "TypeError: WikipediaQueryRun._run() got an
unexpected keyword argument '__arg1' ". This happens because the schema
sent to the LLM is "input: '{"__arg1":"Hunter x Hunter"}'" while the
method should be called with the "query" parameter.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.
The retriever can be invoked with:
```py
from langchain_community.retrievers import AskNewsRetriever
retriever = AskNewsRetriever(k=3)
retriever.invoke("impact of fed policy on the tech sector")
```
To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.
The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:
```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
tool = AskNewsSearch()
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
)
agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```
---------
Co-authored-by: Emre <e@emre.pm>
- **Description:** Fix import class name exporeted from
'playwright.async_api' and 'playwright.sync_api' to match the correct
name in playwright tool. Change import from inline guard_import to
helper function that calls guard_import to make code more readable in
gmail tool. Upgrade playwright version to 1.43.0
- **Issue:** #21354
- **Dependencies:** upgrade playwright version(this is not required for
the bugfix itself, just trying to keep dependencies fresh. I can remove
the playwright version upgrade if you want.)
Description: this change adds args_schema (pydantic BaseModel) to
YahooFinanceNewsTool for correct schema formatting on LLM function calls
Issue: currently using YahooFinanceNewsTool with OpenAI function calling
returns the following error "TypeError("YahooFinanceNewsTool._run() got
an unexpected keyword argument '__arg1'")". This happens because the
schema sent to the LLM is "input: "{'__arg1': 'MSFT'}"" while the method
should be called with the "query" parameter.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue: we have several helper functions to import third-party libraries
like tools.gmail.utils.import_google in
[community.tools](https://api.python.langchain.com/en/latest/community_api_reference.html#id37).
And we have core.utils.utils.guard_import that works exactly for this
purpose.
The import_<package> functions work inconsistently and rather be private
functions.
Change: replaced these functions with the guard_import function.
Related to #21133
* Introduce individual `fetch_` methods for easier typing.
* Rework some docstrings to google style
* Move some logic to the tool
* Merge the 2 cassandra utility files
## Summary
I ran `ruff check --extend-select RUF100 -n` to identify `# noqa`
comments that weren't having any effect in Ruff, and then `ruff check
--extend-select RUF100 -n --fix` on select files to remove all of the
unnecessary `# noqa: F401` violations. It's possible that these were
needed at some point in the past, but they're not necessary in Ruff
v0.1.15 (used by LangChain) or in the latest release.
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.
Includes unit test and two notebooks to demonstrate usage.
**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin
---------
Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None
---------
Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
`_ListSQLDatabaseToolInput` raise error if model returns `{}`.
For example, gpt-4-turbo returns `{}` with SQL Agent initialized by
`create_sql_agent`.
So, I set default value `""` for `_ListSQLDatabaseToolInput` tool_input.
This is actually a gpt-4-turbo issue, not a LangChain issue, but I
thought it would be helpful to set a default value `""`.
This problem is discussed in detail in the following Issue.
**Issue:** https://github.com/langchain-ai/langchain/issues/20405
**Dependencies:** none
Sorry, I did not add or change the test code, as tests for this
components was not exist .
However, I have tested the following code based on the [SQL Agent
Document](https://python.langchain.com/docs/use_cases/sql/agents/), to
make sure it works.
```
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_openai import ChatOpenAI
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
llm = ChatOpenAI(model="gpt-4-turbo", temperature=0)
agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)
result = agent_executor.invoke("List the total sales per country. Which country's customers spent the most?")
print(result["output"])
```
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Created a Langchain Tool for OpenAI DALLE Image
Generation.
**Issue:**
[#15901](https://github.com/langchain-ai/langchain/issues/15901)
**Dependencies:** n/a
**Twitter handle:** @paulodoestech
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This is a follow up to #18371. These are the changes:
- New **Azure AI Services** toolkit and tools to replace those of
**Azure Cognitive Services**.
- Updated documentation for Microsoft platform.
- The image analysis tool has been rewritten to use the new package
`azure-ai-vision-imageanalysis`, doing a proper replacement of
`azure-ai-vision`.
These changes:
- Update outdated naming from "Azure Cognitive Services" to "Azure AI
Services".
- Update documentation to use non-deprecated methods to create and use
agents.
- Removes need to depend on yanked python package (`azure-ai-vision`)
There is one new dependency that is needed as a replacement to
`azure-ai-vision`:
- `azure-ai-vision-imageanalysis`. This is optional and declared within
a function.
There is a new `azure_ai_services.ipynb` notebook showing usage; Changes
have been linted and formatted.
I am leaving the actions of adding deprecation notices and future
removal of Azure Cognitive Services up to the LangChain team, as I am
not sure what the current practice around this is.
---
If this PR makes it, my handle is @galo@mastodon.social
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** This modification adds pydantic input definition for
sql_database tools. This helps for function calling capability in
LangGraph. Since actions nodes will usually check for the args_schema
attribute on tools, This update should make these tools compatible with
it (only implemented on the InfoSQLDatabaseTool)
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** juanfe8881
## Add Passio Nutrition AI Food Search Tool to Community Package
### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.
### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.
### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.
### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.
### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.
### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.
### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.
### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.