Commit Graph

281 Commits

Author SHA1 Message Date
Ofer Mendelevitch
ad502e8d50 community[minor]: Vectara Integration Update - Streaming, FCS, Chat, updates to documentation and example notebooks (#21334)
Thank you for contributing to LangChain!

**Description:** update to the Vectara / Langchain integration to
integrate new Vectara capabilities:
- Full RAG implemented as a Runnable with as_rag()
- Vectara chat supported with as_chat()
- Both support streaming response
- Updated documentation and example notebook to reflect all the changes
- Updated Vectara templates

**Twitter handle:** ofermend

**Add tests and docs**: no new tests or docs, but updated both existing
tests and existing docs
2024-06-04 12:57:28 -07:00
Joydeep Banik Roy
3796672c67 community, milvus, pinecone, qdrant, mongo: Broadcast operation failure while using simsimd beyond v3.7.7 (#22271)
- [ ] **Packages affected**: 
  - community: fix `cosine_similarity` to support simsimd beyond 3.7.7
- partners/milvus: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/mongodb: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/pinecone: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/qdrant: fix `cosine_similarity` to support simsimd beyond
3.7.7


- [ ] **Broadcast operation failure while using simsimd beyond v3.7.7**:
- **Description:** I was using simsimd 4.3.1 and the unsupported operand
type issue popped up. When I checked out the repo and ran the tests,
they failed as well (have attached a screenshot for that). Looks like it
is a variant of https://github.com/langchain-ai/langchain/issues/18022 .
Prior to 3.7.7, simd.cdist returned an ndarray but now it returns
simsimd.DistancesTensor which is ineligible for a broadcast operation
with numpy. With this change, it also remove the need to explicitly cast
`Z` to numpy array
    - **Issue:** #19905
    - **Dependencies:** No
    - **Twitter handle:** https://x.com/GetzJoydeep

<img width="1622" alt="Screenshot 2024-05-29 at 2 50 00 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/fb27b383-a9ae-4a6f-b355-6d503b72db56">

- [ ] **Considerations**: 
1. I started with community but since similar changes were there in
Milvus, MongoDB, Pinecone, and QDrant so I modified their files as well.
If touching multiple packages in one PR is not the norm, then I can
remove them from this PR and raise separate ones
2. I have run and verified that the tests work. Since, only MongoDB had
tests, I ran theirs and verified it works as well. Screenshots attached
:
<img width="1573" alt="Screenshot 2024-05-29 at 2 52 13 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/ce87d1ea-19b6-4900-9384-61fbc1a30de9">
<img width="1614" alt="Screenshot 2024-05-29 at 3 33 51 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/6ce1d679-db4c-4291-8453-01028ab2dca5">
  

I have added a test for simsimd. I feel it may not go well with the
CI/CD setup as installing simsimd is not a dependency requirement. I
have just imported simsimd to ensure simsimd cosine similarity is
invoked. However, its not a good approach. Suggestions are welcome and I
can make the required changes on the PR. Please provide guidance on the
same as I am new to the community.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-04 17:36:31 +00:00
KyrianC
03178ee74f community[minor]: Add tools calls to ChatEdenAI (#22320)
### Description  
Add tools implementation to `ChatEdenAI`:
- `bind_tools()`
- `with_structured_output()`

### Documentation 
Updated `docs/docs/integrations/chat/edenai.ipynb`

### Notes
We don´t support stream with tools as of yet. If stream is called with
tools we directly yield the whole message from `generate` (implemented
the same way as Anthropic did).
2024-06-04 10:29:28 -07:00
Rahul Triptahi
77ad857934 community[minor]: Enable retrieval api calls in PebbloRetrievalQA (#21958)
Description: Enable app discovery and Prompt/Response apis in
PebbloSafeRetrieval
Documentation: NA
Unit test: N/A

---------

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-06-04 10:18:50 -07:00
ccurme
afe89a1411 community: add standard chat model params to Ollama (#22446) 2024-06-03 17:45:03 -04:00
maang-h
13140dc4ff community[patch]: Update the default api_url and reqeust_body of sparkllm embedding (#22136)
- **Description:** When I was running the SparkLLMTextEmbeddings,
app_id, api_key and api_secret are all correct, but it cannot run
normally using the current URL.

    ```python
    # example
    from langchain_community.embeddings import SparkLLMTextEmbeddings

    embedding= SparkLLMTextEmbeddings(
        spark_app_id="my-app-id",
        spark_api_key="my-api-key",
        spark_api_secret="my-api-secret"
    )
    embedding= "hello"
    print(spark.embed_query(text1))
    ```

![sparkembedding](https://github.com/langchain-ai/langchain/assets/55082429/11daa853-4f67-45b2-aae2-c95caa14e38c)
   
So I updated the url and request body parameters according to
[Embedding_api](https://www.xfyun.cn/doc/spark/Embedding_api.html), now
it is runnable.
2024-06-03 12:38:11 -07:00
Yuwen Hu
ba0dca46d7 community[minor]: Add IPEX-LLM BGE embedding support on both Intel CPU and GPU (#22226)
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds ipex-llm integrations to langchain for BGE
embedding support on both Intel CPU and GPU.
**Dependencies:** `ipex-llm`, `sentence-transformers`
**Contribution maintainer**: @Oscilloscope98 
**tests and docs**: 
- langchain/docs/docs/integrations/text_embedding/ipex_llm.ipynb
- langchain/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb
-
langchain/libs/community/tests/integration_tests/embeddings/test_ipex_llm.py

---------

Co-authored-by: Shengsheng Huang <shannie.huang@gmail.com>
2024-06-03 12:37:10 -07:00
Pavlo Paliychuk
342df7cf83 community[minor]: Add Zep Cloud components + docs + examples (#21671)
Thank you for contributing to LangChain!

- [x] **PR title**: community: Add Zep Cloud components + docs +
examples

- [x] **PR message**: 
We have recently released our new zep-cloud sdks that are compatible
with Zep Cloud (not Zep Open Source). We have also maintained our Cloud
version of langchain components (ChatMessageHistory, VectorStore) as
part of our sdks. This PRs goal is to port these components to langchain
community repo, and close the gap with the existing Zep Open Source
components already present in community repo (added
ZepCloudMemory,ZepCloudVectorStore,ZepCloudRetriever).
Also added a ZepCloudChatMessageHistory components together with an
expression language example ported from our repo. We have left the
original open source components intact on purpose as to not introduce
any breaking changes.
    - **Issue:** -
- **Dependencies:** Added optional dependency of our new cloud sdk
`zep-cloud`
    - **Twitter handle:** @paulpaliychuk51


- [x] **Add tests and docs**


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-05-27 12:50:13 -07:00
Jirka Lhotka
7c0459faf2 community: Update costs of openai finetuned models (#22124)
- **Description:** Update costs of finetuned models and add
gpt-3-turbo-0125. Source: https://openai.com/api/pricing/
  - **Issue:** N/A
  - **Dependencies:** None
2024-05-24 15:25:17 +00:00
Christophe Bornet
c838de5027 doc: Add doc for CassandraByteStore (#22126)
Preview:
https://langchain-git-fork-cbornet-doc-cassandrabytestore-langchain.vercel.app/v0.2/docs/integrations/stores/cassandra/
2024-05-24 10:57:55 -04:00
Eugene Yurtsev
2d693c484e docs: fix some spelling mistakes caught by newest version of code spell (#22090)
Going to merge this even though it doesn't pass all tests, and open a
separate PR for the remaining spelling mistakes.
2024-05-23 16:59:11 -04:00
Pavel Zloi
fe26f937e4 community[minor]: ManticoreSearch engine added to vectorstore (#19117)
**Description:** ManticoreSearch engine added to vectorstores
**Issue:** no issue, just a new feature
**Dependencies:** https://pypi.org/project/manticoresearch-dev/
**Twitter handle:** @EvilFreelancer

- Example notebook with test integration:

https://github.com/EvilFreelancer/langchain/blob/manticore-search-vectorstore/docs/docs/integrations/vectorstores/manticore_search.ipynb

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-23 13:56:18 -07:00
Philippe PRADOS
6dd621d636 community[minor]: Add CloudBlobLoader that supports loading data from cloud buckets (#21957)
Thank you for contributing to LangChain!

- [ ] **PR title**: "Add CloudBlobLoader"
  - community: Add CloudBlobLoader

- [ ] **PR message**: Add cloud blob loader
    - **Description:** 
 Langchain provides several approaches to read different file formats:

Specific loaders (`CVSLoader`) or blob-compatible loaders
(`FileSystemBlobLoader`). The only implementation proposed for
BlobLoader is `FileSystemBlobLoader`.
      
Many projects retrieve files from cloud storage. We propose a new
implementation of `BlobLoader` to read files from the three cloud
storage systems. The interface is strictly identical to
`FileSystemBlobLoader`. The only difference is the constructor, which
takes a cloud "url" object such as `s3://my-bucket`, `az://my-bucket`,
or `gs://my-bucket`.
      
By streamlining the process, this novel implementation eliminates the
requirement to pre-download files from cloud storage to local temporary
files (which are seldom removed).
      
The code relies on the
[CloudPathLib](https://cloudpathlib.drivendata.org/stable/) library to
interpret cloud URLs. This has been added as an optional dependency.

```Python
loader = CloudBlobLoader("s3://mybucket/id")
for blob in loader.yield_blobs():
    print(blob)
```

- [X] **Dependencies:** CloudPathLib
- [X] **Twitter handle:** pprados


- [X] **Add tests and docs**: Add unit test, but it's easy to convert to
integration test, with some files in a cloud storage (see
`test_cloud_blob_loader.py`)

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.

Hello from Paris @hwchase17. Can you review this PR?

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-05-23 10:59:55 -04:00
Bruno Alvisio
5eabe90494 community[patch]: Adding HEADER to the list of supported locations (#21946)
**Description:** adds headers to the list of supported locations when
generating the openai function schema
2024-05-22 22:47:56 +00:00
Bagatur
50186da0a1 infra: rm unused # noqa violations (#22049)
Updating #21137
2024-05-22 15:21:08 -07:00
acho98
45ed5f3f51 community[minor]: Add Clova Embeddings for LangChain Community (#21890)
- [ ] **PR title**: "Add Naver ClovaX embedding to LangChain community"
- HyperClovaX is a large language model developed by
[Naver](https://clova-x.naver.com/welcome).
It's a powerful and purpose-trained LLM.

- You can visit the embedding service provided by
[ClovaX](https://www.ncloud.com/product/aiService/clovaStudio)

- You may get CLOVA_EMB_API_KEY, CLOVA_EMB_APIGW_API_KEY,
CLOVA_EMB_APP_ID From
https://www.ncloud.com/product/aiService/clovaStudio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-22 22:08:47 +00:00
MSubik
d948783a4c community[patch]: standardize init args, update for javelin sdk release. (#21980)
Related to
[20085](https://github.com/langchain-ai/langchain/issues/20085) Updated
the Javelin chat model to standardize the initialization argument. Also
fixed an existing bug, where code was initialized with incorrect call to
the JavelinClient defined in the javelin_sdk, resulting in an
initialization error. See related [Javelin
Documentation](https://docs.getjavelin.io/docs/javelin-python/quickstart).
2024-05-22 21:47:28 +00:00
Mazen Ramadan
3c1d77dd64 community[minor]: Add Scrapfly Loader community integration (#22036)
Added [Scrapfly](https://scrapfly.io/) Web Loader integration. Scrapfly
is a web scraping API that allows extracting web page data into
accessible markdown or text datasets.

- __Description__: Added Scrapfly web loader for retrieving web page
data as markdown or text.
- Dependencies: scrapfly-sdk
- Twitter: @thealchemi1st

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-22 21:29:13 +00:00
Eric Zhang
e7e41eaabe langchain: add RankLLM Reranker (#21171)
Integrate RankLLM reranker (https://github.com/castorini/rank_llm) into
LangChain

An example notebook is given in
`docs/docs/integrations/retrievers/rankllm-reranker.ipynb`

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-05-22 20:12:55 +00:00
maang-h
fc93bed8c4 community: Fix CSVLoader columns is None (#20701)
- **Bug code**: In
langchain_community/document_loaders/csv_loader.py:100

- **Description**: currently, when 'CSVLoader' reads the column as None
in the 'csv' file, it will report an error because the 'CSVLoader' does
not verify whether the column is of str type and does not consider how
to handle the corresponding 'row_data' when the column is' None 'in the
csv. This pr provides a solution.

- **Issue:**  Fix #20699 

- **thinking:**

1. Refer to the processing method for
'langchain_community/document_loaders/csv_loader.py:100' when **'v'**
equals'None', and apply the same method to '**k**'.
(Reference`csv.DictReader` ,**'k'** will only be None when `
len(columns) < len(number_row_data)` is established)
2. **‘k’** equals None only holds when it is the last column, and its
corresponding **'v'** type is a list. Therefore, I referred to the data
format in 'Document' and used ',' to concatenated the elements in the
list.(But I'm not sure if you accept this form, if you have any other
ideas, communicate)

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-05-22 12:57:46 -07:00
Eugene Yurtsev
36813d2f00 community[patch]: Fix remaining __inits__ in community (#22037)
Fixes the __init__ files in community to use __all__ which is statically
defined.
2024-05-22 17:42:17 +00:00
Eugene Yurtsev
58360a1e53 community[patch]: Add unit test to verify that init is correctly defined (#22030)
Fix some __init__ files and add a unit test
2024-05-22 17:19:00 +00:00
Eugene Yurtsev
8d82160a8a community[patch]: Clean up logic in import checking unit test (#22026)
Clean up unit test
2024-05-22 15:30:10 +00:00
Eugene Yurtsev
aed64daabb community[patch]: Add unit test to catch bad __all__ definitions (#21996)
This will catch all dynamic __all__ definitions.
2024-05-22 09:32:13 -04:00
Robert Caulk
54adcd9e82 community[minor]: add AskNews retriever and AskNews tool (#21581)
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.

The retriever can be invoked with:

```py
from langchain_community.retrievers import AskNewsRetriever

retriever = AskNewsRetriever(k=3)

retriever.invoke("impact of fed policy on the tech sector")
```

To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.

The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:

```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI

tool = AskNewsSearch()

instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
    agent=agent,
    tools=tools,
    verbose=True,
)

agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```

---------

Co-authored-by: Emre <e@emre.pm>
2024-05-20 18:23:06 -07:00
Jesse S
fc79b372cb community[minor]: add aerospike vectorstore integration (#21735)
Please let me know if you see any possible areas of improvement. I would
very much appreciate your constructive criticism if time allows.

**Description:**
- Added a aerospike vector store integration that utilizes
[Aerospike-Vector-Search](https://aerospike.com/products/vector-database-search-llm/)
add-on.
- Added both unit tests and integration tests
- Added a docker compose file for spinning up a test environment
- Added a notebook

 **Dependencies:** any dependencies required for this change
- aerospike-vector-search

 **Twitter handle:** 
- No twitter, you can use my GitHub handle or LinkedIn if you'd like

Thanks!

---------

Co-authored-by: Jesse Schumacher <jschumacher@aerospike.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-21 01:01:47 +00:00
Eugene Yurtsev
8607735b80 langchain[patch],community[patch]: Move unit tests that depend on community to community (#21685) 2024-05-16 17:24:27 -04:00
Kyle Cassidy
eca8c4bcc6 Standardized openai init params (#21739)
## Patch Summary
community:openai[patch]: standardize init args

## Details
I made changes to the OpenAI Chat API wrapper test in the Langchain
open-source repository

- **File**: `libs/community/tests/unit_tests/chat_models/test_openai.py`
- **Changes**:
  - Updated `max_retries` with Pydantic Field
  - Updated the corresponding unit test
- **Related Issues**: #20085
  - Updated max_retries with Pydantic Field, updated the unit test.

---------

Co-authored-by: JuHyung Son <sonju0427@gmail.com>
2024-05-16 16:30:52 +00:00
Harrison Chase
15be439719 Harrison/move flashrank rerank (#21448)
third party integration, should be in community
2024-05-15 13:08:52 -07:00
Rajendra Kadam
54e003268e langchain[minor]: Add PebbloRetrievalQA chain with Identity & Semantic Enforcement support (#20641)
- **Description:** PebbloRetrievalQA chain introduces identity
enforcement using vector-db metadata filtering
- **Dependencies:** None
- **Issue:** None
- **Documentation:** Adding documentation for PebbloRetrievalQA chain in
a separate PR(https://github.com/langchain-ai/langchain/pull/20746)
- **Unit tests:** New unit-tests added

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-05-15 13:14:52 +00:00
Eugene Yurtsev
25fbe356b4 community[patch]: upgrade to recent version of mypy (#21616)
This PR upgrades community to a recent version of mypy. It inserts type:
ignore on all existing failures.
2024-05-13 14:55:07 -04:00
ccurme
3bb9bec314 bedrock: add unit test for retriever (#21485)
This was implemented in
https://github.com/langchain-ai/langchain/pull/21349 but dropped before
merge.
2024-05-09 11:37:03 -04:00
Yash
cb31c3611f Ndb enterprise (#21233)
Description: Adds NeuralDBClientVectorStore to the langchain, which is
our enterprise client.

---------

Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com>
Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
2024-05-08 16:30:58 -07:00
Sokolov Fedor
f4ddf64faa community: Add MarkdownifyTransformer to langchain_community.document_transformers (#21247)
- Added new document_transformer: MarkdonifyTransformer, that uses
`markdonify` package with customizable options to convert HTML to
Markdown. It's similar to Html2TextTransformer, but has more flexible
options and also I've noticed that sometimes MarkdownifyTransformer
performs better than html2text one, so that's why I use markdownify on
my project.
- Added docs and tests

- Usage:
```python
from langchain_community.document_transformers import MarkdownifyTransformer

markdownify = MarkdownifyTransformer()
docs_transform = markdownify.transform_documents(docs)
```

- Example of better performance on simple task, that I've noticed:
```
<html>
<head><title>Reports on product movement</title></head>
<body>
<p data-block-key="2wst7">The reports on product movement will be useful for forming supplier orders and controlling outcomes.</p>
</body>
```
**Html2TextTransformer**: 
```python
[Document(page_content='The reports on product movement will be useful for forming supplier orders and\ncontrolling outcomes.\n\n')]
# Here we can see 'and\ncontrolling', which has extra '\n' in it
```
**MarkdownifyTranformer**:
```python
[Document(page_content='Reports on product movement\n\nThe reports on product movement will be useful for forming supplier orders and controlling outcomes.')]
```

---------

Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.bbrouter>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.local>
Co-authored-by: Sokolov Fedor <f.sokolov@192.168.1.6>
2024-05-08 14:45:13 -07:00
Eugene Yurtsev
f92006de3c multiple: langchain 0.2 in master (#21191)
0.2rc 

migrations

- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks

Other todo

- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-08 16:46:52 -04:00
Eugene Yurtsev
6a1d61dbf1 community[patch]: Fix in memory vectorstore to take into account ids when adding docs (#21384)
Should respect `ids` if passed
2024-05-07 15:05:16 -04:00
nrpd25
95cc8e3fc3 premai[patch]:Standardized model init args (#21308)
[Standardized model init args
#20085](https://github.com/langchain-ai/langchain/issues/20085)
- Enable premai chat model to be initialized with `model_name` as an
alias for `model`, `api_key` as an alias for `premai_api_key`.
- Add initialization test `test_premai_initialization`

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-05-06 18:12:29 -04:00
Jorge Piedrahita Ortiz
e65652c3e8 community: add SambaNova embeddings integration (#21227)
- **Description:**  SambaNova hosted embeddings integration
2024-05-06 13:29:59 -07:00
Jorge Piedrahita Ortiz
df1c10260c community: minor changes sambanova integration (#21231)
- **Description:** fix: variable names in root validator not allowing
pass credentials as named parameters in llm instancing, also added
sambanova's sambaverse and sambastudio llms to __init__.py for module
import
2024-05-06 13:28:35 -07:00
Mark Cusack
060987d755 community[minor]: Add indexing via locality sensitive hashing to the Yellowbrick vector store (#20856)
- **Description:** Add LSH-based indexing to the Yellowbrick vector
store module
- **Twitter handle:** @markcusack

---------

Co-authored-by: markcusack <markcusack@markcusacksmac.lan>
Co-authored-by: markcusack <markcusack@Mark-Cusack-sMac.local>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-05-06 20:18:02 +00:00
Param Singh
fee91d43b7 baichuan[patch]:standardize chat init args (#21298)
Thank you for contributing to LangChain!

community:baichuan[patch]: standardize init args

updated `baichuan_api_key` so that aliased to `api_key`. Added test that
it continues to set the same underlying attribute. Test checks for
`SecretStr`

updated `temperature` with Pydantic Field, added unit test. 

Related to https://github.com/langchain-ai/langchain/issues/20085
2024-05-06 18:33:57 +00:00
Rohan Aggarwal
8021d2a2ab community[minor]: Oraclevs integration (#21123)
Thank you for contributing to LangChain!

- Oracle AI Vector Search 
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.


- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings


- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.


- We have made sure that make format and make lint run clean.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-04 03:15:35 +00:00
Eugene Yurtsev
c9119b0e75 langchain[patch],community[minor]: Move some unit tests from langchain to community, use core for fake models (#21190) 2024-05-02 09:57:52 -04:00
Eugene Yurtsev
bec3eee3fa langchain[patch]: Migrate retrievers to use optional langchain community imports (#21155) 2024-05-01 14:44:44 -04:00
East Agile
2a6f78a53f community[minor]: Rememberizer retriever (#20052)
**Description:**
This pull request introduces a new feature for LangChain: the
integration with the Rememberizer API through a custom retriever.
This enables LangChain applications to allow users to load and sync
their data from Dropbox, Google Drive, Slack, their hard drive into a
vector database that LangChain can query. Queries involve sending text
chunks generated within LangChain and retrieving a collection of
semantically relevant user data for inclusion in LLM prompts.
User knowledge dramatically improved AI applications.
The Rememberizer integration will also allow users to access general
purpose vectorized data such as Reddit channel discussions and US
patents.

**Issue:**
N/A

**Dependencies:**
N/A

**Twitter handle:**
https://twitter.com/Rememberizer
2024-05-01 10:41:44 -04:00
MacanPN
0f7f448603 community[patch]: add delete() method to AzureSearch vector store (#21127)
**Issue:**
Currently `AzureSearch` vector store does not implement `delete` method.
This PR implements it. This also makes it compatible with LangChain
indexer.

**Dependencies:**
None

**Twitter handle:**
@martintriska1

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-30 23:46:18 +00:00
Cahid Arda Öz
cc6191cb90 community[minor]: Add support for Upstash Vector (#20824)
## Description

Adding `UpstashVectorStore` to utilize [Upstash
Vector](https://upstash.com/docs/vector/overall/getstarted)!

#17012 was opened to add Upstash Vector to langchain but was closed to
wait for filtering. Now filtering is added to Upstash vector and we open
a new PR. Additionally, [embedding
feature](https://upstash.com/docs/vector/features/embeddingmodels) was
added and we add this to our vectorstore aswell.

## Dependencies

[upstash-vector](https://pypi.org/project/upstash-vector/) should be
installed to use `UpstashVectorStore`. Didn't update dependencies
because of [this comment in the previous
PR](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1876522450).

## Tests

Tests are added and they pass. Tests are naturally network bound since
Upstash Vector is offered through an API.

There was [a discussion in the previous PR about mocking the
unittests](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1891820567).
We didn't make changes to this end yet. We can update the tests if you
can explain how the tests should be mocked.

---------

Co-authored-by: ytkimirti <yusuftaha9@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-29 17:25:01 -04:00
chyroc
3e241956d3 community[minor]: add coze chat model (#20770)
add coze chat model, to call coze.com apis
2024-04-29 12:26:16 -04:00
Patrick McFadin
3331865f6b community[minor]: add Cassandra Database Toolkit (#20246)
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.

Includes unit test and two notebooks to demonstrate usage. 

**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin

---------

Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-29 15:51:43 +00:00
Igor Brai
b3e74f2b98 community[minor]: add mojeek search util (#20922)
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None

---------

Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
2024-04-29 15:49:53 +00:00