We only need to rebuild model schemas if type annotation information
isn't available during declaration - that shouldn't be the case for
these types corrected here.
Need to do more thorough testing to make sure these structures have
complete schemas, but hopefully this boosts startup / import time.
Most easily reviewed with the "hide whitespace" option toggled.
Seeing 10-50% speed ups in import time for common structures 🚀
The general purpose of this PR is to lazily import structures within
`langchain_core.XXX_module.__init__.py` so that we're not eagerly
importing expensive dependencies (`pydantic`, `requests`, etc).
Analysis of flamegraphs generated with `importtime` motivated these
changes. For example, the one below demonstrates that importing
`HumanMessage` accidentally triggered imports for `importlib.metadata`,
`requests`, etc.
There's still much more to do on this front, and we can start digging
into our own internal code for optimizations now that we're less
concerned about external imports.
<img width="1210" alt="Screenshot 2025-04-11 at 1 10 54 PM"
src="https://github.com/user-attachments/assets/112a3fe7-24a9-4294-92c1-d5ae64df839e"
/>
I've tracked the improvements with some local benchmarks:
## `pytest-benchmark` results
| Name | Before (s) | After (s) | Delta (s) | % Change |
|-----------------------------|------------|-----------|-----------|----------|
| Document | 2.8683 | 1.2775 | -1.5908 | -55.46% |
| HumanMessage | 2.2358 | 1.1673 | -1.0685 | -47.79% |
| ChatPromptTemplate | 5.5235 | 2.9709 | -2.5526 | -46.22% |
| Runnable | 2.9423 | 1.7793 | -1.163 | -39.53% |
| InMemoryVectorStore | 3.1180 | 1.8417 | -1.2763 | -40.93% |
| RunnableLambda | 2.7385 | 1.8745 | -0.864 | -31.55% |
| tool | 5.1231 | 4.0771 | -1.046 | -20.42% |
| CallbackManager | 4.2263 | 3.4099 | -0.8164 | -19.32% |
| LangChainTracer | 3.8394 | 3.3101 | -0.5293 | -13.79% |
| BaseChatModel | 4.3317 | 3.8806 | -0.4511 | -10.41% |
| PydanticOutputParser | 3.2036 | 3.2995 | 0.0959 | 2.99% |
| InMemoryRateLimiter | 0.5311 | 0.5995 | 0.0684 | 12.88% |
Note the lack of change for `InMemoryRateLimiter` and
`PydanticOutputParser` is just random noise, I'm getting comparable
numbers locally.
## Local CodSpeed results
We're still working on configuring CodSpeed on CI. The local usage
produced similar results.
Looks like `pyupgrade` was already used here but missed some docs and
tests.
This helps to keep our docs looking professional and up to date.
Eventually, we should lint / format our inline docs.
TRY004 ("use TypeError rather than ValueError") existing errors are
marked as ignore to preserve backward compatibility.
LMK if you prefer to fix some of them.
Co-authored-by: Erick Friis <erick@langchain.dev>
Add option to return content and artifacts, to also be able to access
the full info of the retrieved documents.
They are returned as a list of dicts in the `artifacts` property if
parameter `response_format` is set to `"content_and_artifact"`.
Defaults to `"content"` to keep current behavior.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
When using `create_xml_agent` or `create_json_chat_agent` to create a
agent, and the function corresponding to the tool is a parameterless
function, the `XMLAgentOutputParser` or `JSONAgentOutputParser` will
parse the tool input into an empty string, `BaseTool` will parse it into
a positional argument.
So, the program will crash finally because we invoke a parameterless
function but with a positional argument.Specially, below code will raise
StopIteration in
[_parse_input](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/tools/base.py#L419)
```python
from langchain import hub
from langchain.agents import AgentExecutor, create_json_chat_agent, create_xml_agent
from langchain_openai import ChatOpenAI
prompt = hub.pull("hwchase17/react-chat-json")
llm = ChatOpenAI()
# agent = create_xml_agent(llm, tools, prompt)
agent = create_json_chat_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke(......)
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** `kwargs` are not being passed to `run` of the
`BaseTool` which has been fixed
- **Issue:** #28114
---------
Co-authored-by: Stevan Kapicic <kapicic.ste1@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
When annotating a function with the @tool decorator, the symbol should
have type BaseTool. The previous type annotations did not convey that to
type checkers. This patch creates 4 overloads for the tool function for
the 4 different use cases.
1. @tool decorator with no arguments
2. @tool decorator with only keyword arguments
3. @tool decorator with a name argument (and possibly keyword arguments)
4. Invoking tool as function with a name and runnable positional
arguments
The main function is updated to match the overloads. The changes are
100% backwards compatible (all existing calls should continue to work,
just with better type annotations).
**Twitter handle:** @nvachhar
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Ruff doesn't know about the python version in
`[tool.poetry.dependencies]`. It can get it from
`project.requires-python`.
Notes:
* poetry seems to have issues getting the python constraints from
`requires-python` and using `python` in per dependency constraints. So I
had to duplicate the info. I will open an issue on poetry.
* `inspect.isclass()` doesn't work correctly with `GenericAlias`
(`list[...]`, `dict[..., ...]`) on Python <3.11 so I added some `not
isinstance(type, GenericAlias)` checks:
Python 3.11
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
False
```
Python 3.9
```pycon
>>> import inspect
>>> inspect.isclass(list)
True
>>> inspect.isclass(list[str])
True
```
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>