Thank you for contributing to LangChain!
- [X] **PR title**: "community: fix code example in ZenGuard docs"
- [X] **PR message**:
- **Description:** corrected the docs by indicating in the code example
that the tool accepts a list of prompts instead of just one
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for review
---------
Co-authored-by: Baur <baur.krykpayev@gmail.com>
- **Description:** This PR fixes an issue with SAP HANA Cloud QRC03
version. In that version the number to indicate no length being set for
a vector column changed from -1 to 0. The change in this PR support both
behaviours (old/new).
- **Dependencies:** No dependencies have been introduced.
- **Tests**: The change is covered by previous unit tests.
fixed potential `IndexError: list index out of range` in case there is
no title
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**langchain: ConversationVectorStoreTokenBufferMemory**
-**Description:** This PR adds ConversationVectorStoreTokenBufferMemory.
It is similar in concept to ConversationSummaryBufferMemory. It
maintains an in-memory buffer of messages up to a preset token limit.
After the limit is hit timestamped messages are written into a
vectorstore retriever rather than into a summary. The user's prompt is
then used to retrieve relevant fragments of the previous conversation.
By persisting the vectorstore, one can maintain memory from session to
session.
-**Issue:** n/a
-**Dependencies:** none
-**Twitter handle:** Please no!!!
- [X] **Add tests and docs**: I looked to see how the unit tests were
written for the other ConversationMemory modules, but couldn't find
anything other than a test for successful import. I need to know whether
you are using pytest.mock or another fixture to simulate the LLM and
vectorstore. In addition, I would like guidance on where to place the
documentation. Should it be a notebook file in docs/docs?
- [X] **Lint and test**: I am seeing some linting errors from a couple
of modules unrelated to this PR.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: update docs and add tool to init.py"
- [x] **PR message**:
- **Description:** Fixed some errors and comments in the docs and added
our ZenGuardTool and additional classes to init.py for easy access when
importing
- **Question:** when will you update the langchain-community package in
pypi to make our tool available?
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for review!
---------
Co-authored-by: Baur <baur.krykpayev@gmail.com>
These currently read off AIMessage.tool_calls, and only fall back to
OpenAI parsing if tool calls aren't populated.
Importing these from `openai_tools` (e.g., in our [tool calling
docs](https://python.langchain.com/v0.2/docs/how_to/tool_calling/#tool-calls))
can lead to confusion.
After landing, would need to release core and update docs.
Pydantic allows empty strings:
```
from langchain.pydantic_v1 import Field, BaseModel
class Property(BaseModel):
"""A single property consisting of key and value"""
key: str = Field(..., description="key")
value: str = Field(..., description="value")
x = Property(key="", value="")
```
Which can produce errors downstream. We simply ignore those records
bing_search_url is an endpoint to requests bing search resource and is
normally invariant to users, we can give it the default value to simply
the uesages of this utility/tool
Description: Add classifier_location feature flag. This flag enables
Pebblo to decide the classifier location, local or pebblo-cloud.
Unit Tests: N/A
Documentation: N/A
---------
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
The code snippet under ‘pdfs_qa’ contains an small incorrect code
example , resulting in users getting errors. This pr replaces ‘llm’
variable with ‘model’ to help user avoid a NameError message.
Resolves#22689
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:** Adds options for configuring MongoDBChatMessageHistory
(no breaking changes):
- session_id_key: name of the field that stores the session id
- history_key: name of the field that stores the chat history
- create_index: whether to create an index on the session id field
- index_kwargs: additional keyword arguments to pass to the index
creation
**Discussion:**
https://github.com/langchain-ai/langchain/discussions/22918
**Twitter handle:** @userlerueda
---------
Co-authored-by: Jib <Jibzade@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Add standard tests to base store abstraction. These only work on [str,
str] right now. We'll need to check if it's possible to add
encoder/decoders to generalize
**Description:**
This PR addresses an issue in the `MongodbLoader` where nested fields
were not being correctly extracted. The loader now correctly handles
nested fields specified in the `field_names` parameter.
**Issue:**
Fixes an issue where attempting to extract nested fields from MongoDB
documents resulted in `KeyError`.
**Dependencies:**
No new dependencies are required for this change.
**Twitter handle:**
(Optional, your Twitter handle if you'd like a mention when the PR is
announced)
### Changes
1. **Field Name Parsing**:
- Added logic to parse nested field names and safely extract their
values from the MongoDB documents.
2. **Projection Construction**:
- Updated the projection dictionary to include nested fields correctly.
3. **Field Extraction**:
- Updated the `aload` method to handle nested field extraction using a
recursive approach to traverse the nested dictionaries.
### Example Usage
Updated usage example to demonstrate how to specify nested fields in the
`field_names` parameter:
```python
loader = MongodbLoader(
connection_string=MONGO_URI,
db_name=MONGO_DB,
collection_name=MONGO_COLLECTION,
filter_criteria={"data.job.company.industry_name": "IT", "data.job.detail": { "$exists": True }},
field_names=[
"data.job.detail.id",
"data.job.detail.position",
"data.job.detail.intro",
"data.job.detail.main_tasks",
"data.job.detail.requirements",
"data.job.detail.preferred_points",
"data.job.detail.benefits",
],
)
docs = loader.load()
print(len(docs))
for doc in docs:
print(doc.page_content)
```
### Testing
Tested with a MongoDB collection containing nested documents to ensure
that the nested fields are correctly extracted and concatenated into a
single page_content string.
### Note
This change ensures backward compatibility for non-nested fields and
improves functionality for nested field extraction.
### Output Sample
```python
print(docs[:3])
```
```shell
# output sample:
[
Document(
# Here in this example, page_content is the combined text from the fields below
# "position", "intro", "main_tasks", "requirements", "preferred_points", "benefits"
page_content='all combined contents from the requested fields in the document',
metadata={'database': 'Your Database name', 'collection': 'Your Collection name'}
),
...
]
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [x] PR title:
community: Add OCI Generative AI new model support
- [x] PR message:
- Description: adding support for new models offered by OCI Generative
AI services. This is a moderate update of our initial integration PR
16548 and includes a new integration for our chat models under
/langchain_community/chat_models/oci_generative_ai.py
- Issue: NA
- Dependencies: No new Dependencies, just latest version of our OCI sdk
- Twitter handle: NA
- [x] Add tests and docs:
1. we have updated our unit tests
2. we have updated our documentation including a new ipynb for our new
chat integration
- [x] Lint and test:
`make format`, `make lint`, and `make test` run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
** Description**
This is the community integration of ZenGuard AI - the fastest
guardrails for GenAI applications. ZenGuard AI protects against:
- Prompts Attacks
- Veering of the pre-defined topics
- PII, sensitive info, and keywords leakage.
- Toxicity
- Etc.
**Twitter Handle** : @zenguardai
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. Added an integration test
2. Added colab
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.
---------
Co-authored-by: Nuradil <nuradil.maksut@icloud.com>
Co-authored-by: Nuradil <133880216+yaksh0nti@users.noreply.github.com>