- Title: Fix typo to correct "embedding" to "embeddings" in PGVector
initialization example
- Problem: There is a typo in the example code for initializing the
PGVector class. The current parameter "embedding" is incorrect as the
class expects "embeddings".
- Correction: The corrected code snippet is:
vector_store = PGVector(
embeddings=embeddings,
collection_name="my_docs",
connection="postgresql+psycopg://...",
)
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
**Description:**
Adding VoyageAI's text_embedding to 'integrations/text_embedding/'
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** Adding Documentation for new SQL Server Vector Store
Package.
Changed files -
Added new Vector Store -
docs\docs\integrations\vectorstores\sqlserver.ipynb
FeatureTable.Js - docs\src\theme\FeatureTables.js
Microsoft.mdx - docs\docs\integrations\providers\microsoft.mdx
Detailed documentation on API -
https://python.langchain.com/api_reference/sqlserver/index.html
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
Add `ChatDatabricks` to the list of LLM models options.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Prithvi Kannan <prithvi.kannan@databricks.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** Corrected the parameter name in the
HuggingFaceEmbeddings documentation under integrations/text_embedding/
from model to model_name to align with the actual code usage in the
langchain_huggingface package.
- **Issue:** Fixes#28231
- **Dependencies:** None
* **PR title**: "docs: Replaced langchain import with
langchain-nvidia-ai-endpoints in NVIDIA Endpoints Tab"
* **PR message**:
+ **Description:** Replaced the import of `langchain` with
`langchain-nvidia-ai-endpoints` in the NVIDIA Endpoints Tab to resolve
an error caused by the documentation attempting to import the generic
`langchain` module despite the targeted import.
+ **Issue:**
+ **Dependencies:** No additional dependencies introduced; simply
updated the existing import to a more specific module.
+ **Twitter handle:** https://x.com/nawaz0x1
* **Add tests and docs**:
+ **Applicability:** Not applicable in this case, as the change is a fix
to an existing integration rather than the addition of a new one.
+ **Rationale:** No new functionality or integrations are introduced,
only a corrective import change.
* **Lint and test**:
+ **Status:** Completed
+ **Outcome:**
- `make format`: **Passed**
- `make lint`: **Passed**
- `make test`: **Passed**

This PR adds support to the how-to documentation for using AWS Bedrock
and Sagemaker Endpoints.
Because AWS services above dont presently use API keys to access LLMs
I've amended more of the source code than would normally be expected.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR message**:
- Add Weaviate to the vector store list.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
Updating the gateway pages in the documentation to name the
`langchain-databricks` integration.
---------
Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>