Commit Graph

5416 Commits

Author SHA1 Message Date
Lauren Hirata Singh
c6aeb52b62 chore(docs): more redirects 2025-11-07 16:13:25 -05:00
Lauren Hirata Singh
889e8b6de8 Revert 33805 fix last plz (#33806) 2025-11-03 16:16:18 -05:00
Lauren Hirata Singh
5cb0501c59 fix(docs): redirects (#33805) 2025-11-03 15:58:13 -05:00
Lauren Hirata Singh
5838e3e8e5 fix(docs): fine tune redirects (#33802) 2025-11-03 15:01:53 -05:00
Lauren Hirata Singh
fbd96c688a chore(docs): Add redirect for multi-modal (#33801) 2025-11-03 13:04:41 -05:00
Lauren Hirata Singh
2085f69d68 fix(docs): Make redirects more specific for integrations (#33799) 2025-11-03 11:38:56 -05:00
Lauren Hirata Singh
df2ec0ca38 fix(docs): Fix regex in redirects (#33795) 2025-11-03 10:52:37 -05:00
Lauren Hirata Singh
51e1447c9e chore(docs): add api reference redirects (#33765) 2025-10-31 13:50:00 -04:00
Lauren Hirata Singh
bac96fe33f fix(docs): get redirects to build (#33763) 2025-10-31 12:09:21 -04:00
Lauren Hirata Singh
d8b08a1ecd fix(docs): redirects (#33734) 2025-10-29 17:57:08 -04:00
Lauren Hirata Singh
9b5e00f578 fix(docs): Redirects fix (#33724) 2025-10-29 13:47:16 -04:00
Lauren Hirata Singh
8c22e69491 chore(docs): redirects to new docs (#33703)
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-10-29 12:12:18 -04:00
Mason Daugherty
d62b4499ad fix: (v0.3) unsupported @vercel/edge import (#33620) 2025-10-21 00:37:40 -04:00
Mason Daugherty
f8bb3f0d19 docs: v0.3 deprecation banner (#33613) 2025-10-20 17:01:06 -04:00
Mason Daugherty
8284e278d6 Revert "chore(docs): v0.3 redirects" (#33612)
Reverts langchain-ai/langchain#33553
2025-10-20 11:27:03 -04:00
Lauren Hirata Singh
3a846eeb8d chore(docs): v0.3 redirects (#33553) 2025-10-17 00:00:21 -04:00
Lauren Hirata Singh
d273341249 chore(docs): add middleware to handle redirects (#33547)
still need to add v0.3 redirects
2025-10-16 21:12:08 -04:00
Lauren Hirata Singh
db49a14a34 chore(docs): Redirects v0.1/v0.2 (#33538) 2025-10-16 16:46:37 -04:00
Mason Daugherty
ab7eda236e fix: feature table for MongoDB (#33471) 2025-10-13 21:17:22 -04:00
Jib
d418cbdf44 docs: flag Multi Tenancy as a MongoDBAtlasVectorStore supported feature (#33469)
- **Description:** 
- Change the docs flag for v0.3 branch to list Multi-tenancy as a
MongoDBAtlasVectorStore supported feature
  - **Issue:** N/A
  - **Dependencies:** None

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://docs.langchain.com/oss/python/contributing) for
more.

Additional guidelines:

- Most PRs should not touch more than one package.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests. Likewise,
please do not update the `uv.lock` files unless you are adding a
required dependency.
- Changes should be backwards compatible.
- Make sure optional dependencies are imported within a function.
2025-10-13 16:57:40 -04:00
Mason Daugherty
809a0216a5 chore: update v0.3 ref homepage (#33338) 2025-10-07 12:56:07 -04:00
Mason Daugherty
c9590ef79d docs: fix infinite loop in vercel.json redirects (#33240) 2025-10-02 20:24:09 -04:00
Mason Daugherty
c972552c40 docs: work for freeze (#33239) 2025-10-02 20:01:26 -04:00
Lauren Hirata Singh
af07949d13 fix(docs): Redirects (#33190) 2025-10-01 16:28:47 -04:00
ccurme
729637a347 docs(anthropic): document support for memory tool and context management (#33149) 2025-09-29 16:38:01 -04:00
Mason Daugherty
986302322f docs: more standardization (#33124) 2025-09-25 20:46:20 -04:00
Mason Daugherty
5bea28393d docs: standardize .. code-block directive usage (#33122)
and fix typos
2025-09-25 16:49:56 -04:00
Mason Daugherty
c3fed20940 docs: correct ported over directives (#33121)
Match rest of repo
2025-09-25 15:54:54 -04:00
Mason Daugherty
ee4d84de7c style(core): typo/docs lint pass (#33093) 2025-09-24 16:11:21 -04:00
Mason Daugherty
79e536b0d6 chore(infra): further docs build cleanup (#33057)
Reorganize the requirements for better clarity and consistency. Improve
documentation on scripts and workflows.
2025-09-23 17:29:58 -04:00
Mason Daugherty
2c95586f2a chore(infra): audit workflows, scripts (#33055)
Mostly adding a descriptive frontmatter to workflow files. Also address
some formatting and outdated artifacts

No functional changes outside of
[d5457c3](d5457c39ee),
[90708a0](90708a0d99),
and
[338c82d](338c82d21e)
2025-09-23 17:08:19 +00:00
Arman Tsaturian
8f488d62b2 docs: fix stripe toolkit import in the guide (#33044)
**Description:**
Stripe tools integration guide incorrectly referenced the `crewai`
toolkit. Updated the import to use the correct `langchain` toolkit.

Stripe docs reference:
https://docs.stripe.com/agents?framework=langchain&lang=python
2025-09-22 15:17:09 -04:00
Mason Daugherty
781db9d892 chore: update pyproject.toml files, remove codespell (#33028)
- Removes Codespell from deps, docs, and `Makefile`s
- Python version requirements in all `pyproject.toml` files now use the
`~=` (compatible release) specifier
- All dependency groups and main dependencies now use explicit lower and
upper bounds, reducing potential for breaking changes
2025-09-20 22:09:33 -04:00
Dushmanta
ee340e0a3b fix(docs): update dead link to docling github and docs (#33001)
- **Description:** Updated the dead/unreachable links to Docling from
the additional resources section of the langchain-docling docs
  - **Issue:** Fixes langchain-ai/docs/issues/574
  - **Dependencies:** None
2025-09-18 09:30:29 -04:00
Mason Daugherty
76d0758007 fix(docs): json_mode -> json_schema (#32993) 2025-09-17 18:21:34 +00:00
Mason Daugherty
8b3f74012c docs: update GenAI structured output section to include JSON mode details (#32992) 2025-09-17 17:40:34 +00:00
Chase Lean
543d90e108 docs: add langchain-scraperapi (#31973)
Adds documentation for the integration langchain-scraperapi, which
contains 3 tools using the ScraperAPI service.

The tools give AI agents the ability to

Scrape the web and return HTML/text/markdown
Perform Google search and return json output
Perform Amazon search and return json output

For reference, here is the official repo for langchain_scraperapi:
https://github.com/scraperapi/langchain-scraperapi
2025-09-16 21:46:20 -04:00
Adam Deedman
f8640630d8 docs: fix memory for agents (#32979)
Replaced `input_message` parameter with a directly called tuple, e.g.
`{"messages": [("user", "What is my name?")]}`

Before, the memory function wasn't working with the agent, using the
format of the input_message parameter.

Specifically, on page [Build an
Agent#adding-in-memory](https://python.langchain.com/docs/tutorials/agents/#adding-in-memory)

In the previous code, the query "What's my name?" wasn't working, as the
agent could not recall memory correctly.

<img width="860" height="679" alt="image"
src="https://github.com/user-attachments/assets/dfbca21e-ffe9-4645-a810-3be7a46d81d5"
/>
2025-09-16 15:46:15 -04:00
Username46786
435194acf6 docs: add cross-links between summarization how-to pages (#32968)
This PR improves navigation in the summarization how-to section by
adding
cross-links from the single-call guide to the related map-reduce and
refine
guides. This mirrors the docs style guide’s emphasis on clear
cross-references
and should help readers discover the appropriate pattern for longer
texts.

- Source edited: docs/docs/how_to/summarize_stuff.ipynb
- Links added:
  - /docs/how_to/summarize_map_reduce/
  - /docs/how_to/summarize_refine/

Type: docs-only (no code changes)
2025-09-16 09:59:03 -04:00
Ademílson Tonato
8d60ddba3a docs: update installation command for firecrawl-py package (#32958) 2025-09-15 14:10:08 -04:00
doubleinfinity
b944bbc766 docs: add ZeusDB vector store integration (#32822)
## Description

This PR adds documentation for the new ZeusDB vector store integration
with LangChain.

## Motivation

ZeusDB is a high-performance vector database (Python/Rust backend)
designed for AI applications that need fast similarity search and
real-time vector ops. This integration brings ZeusDB's capabilities to
the LangChain ecosystem, giving developers another production-oriented
option for vector storage and retrieval.

**Key Features:**
- **User-Friendly Python API**: Intuitive interface that integrates
seamlessly with Python ML workflows
- **High Performance**: Powered by a robust Rust backend for
lightning-fast vector operations
- **Enterprise Logging**: Comprehensive logging capabilities for
monitoring and debugging production systems
- **Advanced Features**: Includes product quantization and persistence
capabilities
- **AI-Optimized**: Purpose-built for modern AI applications and RAG
pipelines

## Changes

- Added provider documentation:
`docs/docs/integrations/providers/zeusdb.mdx` (installation, setup).

- Added vector store documentation:
`docs/docs/integrations/vectorstores/zeusdb.ipynb` (quickstart for
creating/querying a ZeusDBVectorStore).

- Registered langchain-zeusdb in `libs/packages.yml` for discovery.

## Target users

- AI/ML engineers building RAG pipelines

- Data scientists working with large document collections

- Developers needing high-throughput vector search

- Teams requiring near real-time vector operations

## Testing

- Followed LangChain's "How to add standard tests to an integration"
guidance.
- Code passes format, lint, and test checks locally.
- Tested with LangChain Core 0.3.74
- Works with Python 3.10 to 3.13

## Package Information
**PyPI:** https://pypi.org/project/langchain-zeusdb
**Github:** https://github.com/ZeusDB/langchain-zeusdb
2025-09-15 09:55:14 -04:00
Filip Makraduli
0be7515abc docs: add superlinked retriever integration (#32433)
# feat(superlinked): add superlinked retriever integration

**Description:** 
Add Superlinked as a custom retriever with full LangChain compatibility.
This integration enables users to leverage Superlinked's multi-modal
vector search capabilities including text similarity, categorical
similarity, recency, and numerical spaces with flexible weighting
strategies. The implementation provides a `SuperlinkedRetriever` class
that extends LangChain's `BaseRetriever` with comprehensive error
handling, parameter validation, and support for various vector databases
(in-memory, Qdrant, Redis, MongoDB).

**Key Features:**
- Full LangChain `BaseRetriever` compatibility with `k` parameter
support
- Multi-modal search spaces (text, categorical, numerical, recency)
- Flexible weighting strategies for complex search scenarios
- Vector database agnostic implementation
- Comprehensive validation and error handling
- Complete test coverage (unit tests, integration tests)
- Detailed documentation with 6 practical usage examples

**Issue:** N/A (new integration)

**Dependencies:** 
- `superlinked==33.5.1` (peer dependency, imported within functions)
- `pandas^2.2.0` (required by superlinked)

**Linkedin handle:** https://www.linkedin.com/in/filipmakraduli/

## Implementation Details

### Files Added/Modified:
- `libs/partners/superlinked/` - Complete package structure
- `libs/partners/superlinked/langchain_superlinked/retrievers.py` - Main
retriever implementation
- `libs/partners/superlinked/tests/unit_tests/test_retrievers.py` - unit
tests
- `libs/partners/superlinked/tests/integration_tests/test_retrievers.py`
- Integration tests with mocking
- `docs/docs/integrations/retrievers/superlinked.ipynb` - Documentation
a few usage examples

### Testing:
- `make format` - passing
- `make lint` - passing 
- `make test` - passing (16 unit tests, integration tests)
- Comprehensive test coverage including error handling, validation, and
edge cases

### Documentation:
- Example notebook with 6 practical scenarios:
  1. Simple text search
  2. Multi-space blog search (content + category + recency)
  3. E-commerce product search (price + brand + ratings)
  4. News article search (sentiment + topics + recency)
  5. LangChain RAG integration example
  6. Qdrant vector database integration

### Code Quality:
- Follows LangChain contribution guidelines
- Backwards compatible
- Optional dependencies imported within functions
- Comprehensive error handling and validation
- Type hints and docstrings throughout

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 13:54:04 +00:00
Dmitry
ee17adb022 docs: add AI/ML API integration (#32430)
**Description:**
Introduces documentation notebooks for AI/ML API integration covering
the following use cases:
- Chat models (`ChatAimlapi`)
- Text completion models (`AimlapiLLM`)
- Provider usage examples
- Text embedding models (`AimlapiEmbeddings`)

Additionally, adds the `langchain-aimlapi` package entry to
`libs/packages.yml` for package management.

This PR aims to provide a comprehensive starting point for developers
integrating AI/ML API models with LangChain via the new
`langchain-aimlapi` package.

**Issue:** N/A

**Dependencies:** None

**Twitter handle:** @aimlapi

---

### **To-Do Before Submitting PR:**

* [x] Run `make format`
* [x] Run `make lint`
* [x] Confirm all documentation notebooks are in
`docs/docs/integrations/`
* [x] Double-check `libs/packages.yml` has the correct repo path
* [x] Confirm no `pyproject.toml` modifications were made unnecessarily

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-15 09:41:40 -04:00
Noraina
6a43f140bc docs: update SerpApi free searches amount in tool feature table (#32945)
**Description:** 
This PR updates the free searches per month from **100** to **250** and
renames SerpAPI to [SerpApi](https://serpapi.com/) to prevent confusion.
Add import API keys and enhance usage instructions in the Jupyter
notebook

**Issue:** N/A

**Dependencies:** N/A

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.
2025-09-14 21:42:59 -04:00
Youngho Kim
4619a2727f docs(anthropic): update documentation links (#32938)
**Description:**
This PR updated links to the latest Anthropic documentation. Changes
include revised links for model overview, tool usage, web search tool,
text editor tool, and more.

**Issue:**
N/A

**Dependencies:**
None

**Twitter handle:**
N/A
2025-09-14 21:38:51 -04:00
Nikhil Chandrappa
e6b5ff213a docs: add YugabyteDB Distributed SQL database (#32571)
- **Description:** The `langchain-yugabytedb` package implementations of
core LangChain abstractions using `YugabyteDB` Distributed SQL Database.
  
YugabyteDB is a cloud-native distributed PostgreSQL-compatible database
that combines strong consistency with ultra-resilience, seamless
scalability, geo-distribution, and highly flexible data locality to
deliver business-critical, transactional applications.

[YugabyteDB](https://www.yugabyte.com/ai/) combines the power of the
`pgvector` PostgreSQL extension with an inherently distributed
architecture. This future-proofed foundation helps you build GenAI
applications using RAG retrieval that demands high-performance vector
search.

- [ ] **tests and docs**: 
1. `langchain-yugabytedb`
[github](https://github.com/yugabyte/langchain-yugabytedb) repo.
2. YugabyteDB VectorStore example notebook showing its use. It lives in
`langchain/docs/docs/integrations/vectorstores/yugabytedb.ipynb`
directory.
  3. Running `langchain-yugabytedb` unit tests 
  
- Setting up a Development Environment

This document details how to set up a local development environment that
will
allow you to contribute changes to the project.

Acquire sources and create virtualenv.
```shell
git clone https://github.com/yugabyte/langchain-yugabytedb
cd langchain-yugabytedb
uv venv --python=3.13
source .venv/bin/activate
```

Install package in editable mode.
```shell
uv pip install pipx  
pipx install poetry
poetry install
uv pip install pytest pytest_asyncio pytest-timeout langchain-core langchain_tests sqlalchemy psycopg psycopg-binary numpy pgvector
```

Start YugabyteDB RF-1 Universe.
```shell
docker run -d --name yugabyte_node01 --hostname yugabyte01 \
  -p 7000:7000 -p 9000:9000 -p 15433:15433 -p 5433:5433 -p 9042:9042 \
  yugabytedb/yugabyte:2.25.2.0-b359 bin/yugabyted start --background=false \
  --master_flags="allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true" \
  --tserver_flags="allowed_preview_flags_csv=ysql_yb_enable_advisory_locks,ysql_yb_enable_advisory_locks=true"

docker exec -it yugabyte_node01 bin/ysqlsh -h yugabyte01 -c "CREATE extension vector;"
```

Invoke test cases.
```shell
pytest -vvv tests/unit_tests/yugabytedb_tests
```
2025-09-12 16:55:09 -04:00
Michael Yilma
03f0ebd93e docs: add Bigtable Key-value Store and Vector Store Docs (#32598)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

- [x] **feat(docs)**: add Bigtable Key-value store doc
- [X] **feat(docs)**: add Bigtable Vector store doc 

This PR adds a doc for Bigtable and LangChain Key-value store
integration. It contains guides on how to add, delete, get, and yield
key-value pairs from Bigtable Key-value Store for LangChain.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. **We will not consider
a PR unless these three are passing in CI.** See [contribution
guidelines](https://python.langchain.com/docs/contributing/) for more.

Additional guidelines:

- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to `pyproject.toml` files (even
optional ones) unless they are **required** for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:53:59 -04:00
Bar Cohen
c9eed530ce docs: add Timbr tools integration (#32862)
# feat(integrations): Add Timbr tools integration

## DESCRIPTION

This PR adds comprehensive documentation and integration support for
Timbr's semantic layer tools in LangChain.

[Timbr](https://timbr.ai/) provides an ontology-driven semantic layer
that enables natural language querying of databases through
business-friendly concepts. It connects raw data to governed business
measures for consistent access across BI, APIs, and AI applications.

[`langchain-timbr`](https://pypi.org/project/langchain-timbr/) is a
Python SDK that extends
[LangChain](https://github.com/WPSemantix/Timbr-GenAI/tree/main/LangChain)
and
[LangGraph](https://github.com/WPSemantix/Timbr-GenAI/tree/main/LangGraph)
with custom agents, chains, and nodes for seamless integration with the
Timbr semantic layer. It enables converting natural language prompts
into optimized semantic-SQL queries and executing them directly against
your data.

**What's Added:**
- Complete integration documentation for `langchain-timbr` package
- Tool documentation page with usage examples and API reference

**Integration Components:**
- `IdentifyTimbrConceptChain` - Identify relevant concepts from user
prompts
- `GenerateTimbrSqlChain` - Generate SQL queries from natural language
- `ValidateTimbrSqlChain` - Validate queries against knowledge graph
schemas
- `ExecuteTimbrQueryChain` - Execute queries against semantic databases
- `GenerateAnswerChain` - Generate human-readable answers from results

## Documentation Added

- `/docs/integrations/providers/timbr.mdx` - Provider overview and
configuration
- `/docs/integrations/tools/timbr.ipynb` - Comprehensive tool usage
examples

## Links

- [PyPI Package](https://pypi.org/project/langchain-timbr/)
- [GitHub Repository](https://github.com/WPSemantix/langchain-timbr)
- [Official
Documentation](https://docs.timbr.ai/doc/docs/integration/langchain-sdk/)

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:51:42 -04:00
tbice
e6c38a043f docs: add Qwen integration guide and update qwq documentation (#32817)
Thank you for contributing to LangChain! Follow these steps to mark your
pull request as ready for review. **If any of these steps are not
completed, your PR will not be considered for review.**

**Description:**  
Add documentation for Qwen integration in LangChain, including setup
instructions, usage examples, and configuration details. Update related
qwq documentation to reflect current best practices and improve clarity
for users.

This PR enhances the documentation ecosystem by:
- Adding a new guide for integrating Qwen models
- Updating outdated or incomplete qwq documentation
- Improving structure and readability of relevant sections

**Issue:** N/A  
**Dependencies:** None

---------

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:49:20 -04:00
Elif Sema Balcioglu
dc47c2c598 docs: update langchain-oracledb documentation (#32805)
`Oracle AI Vector Search` integrations for LangChain have been moved to
a dedicated package, [langchain-oracledb
](https://pypi.org/project/langchain-oracledb/), and a new repository,
[langchain-oracle
](https://github.com/oracle/langchain-oracle/tree/main/libs/oracledb).
This PR updates the corresponding documentation, including installation
instructions and import statements, to reflect these changes.

This PR is complemented with:
https://github.com/langchain-ai/langchain-community/pull/283

Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-09-12 16:47:10 -04:00