Currently `_convert_TGI_message_to_LC_message` replaces `'` in the tool
arguments, so an argument like "It's" will be converted to `It"s` and
could cause a json parser to fail.
---------
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Vadym Barda <vadym@langchain.dev>
This change modifies the token cost calculation logic to support
cross-region inference profile IDs for Anthropic Claude models. Instead
of explicitly listing all regional variants of new inference profile IDs
in the cost dictionaries, the code now extracts a base model ID from the
input model ID (or inference profile ID), making it more maintainable
and automatically supporting new regional variants.
These inference profile IDs follow the format:
`<region>.<vendor>.<model-name>` (e.g.,
`us.anthropic.claude-3-haiku-xxx`, `eu.anthropic.claude-3-sonnet-xxx`).
Cross-region inference profiles are system-defined identifiers that
enable distributing model inference requests across multiple AWS
regions. They help manage unplanned traffic bursts and enhance
resilience during peak demands without additional routing costs.
References for Amazon Bedrock's cross-region inference profiles:-
-
https://docs.aws.amazon.com/bedrock/latest/userguide/cross-region-inference.html
-
https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Description:
When using langchain.retrievers.parent_document_retriever.py with
vectorstore is OpenSearchVectorSearch, I found that the bulk_size param
I passed into OpenSearchVectorSearch class did not work on my
ParentDocumentRetriever.add_documents() function correctly, it will be
overwrite with int 500 the function which OpenSearchVectorSearch class
had (e.g., add_texts(), add_embeddings()...).
So I made this PR requset to fix this, thanks!
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR fixes a bug with the current implementation for Model2Vec
embeddings where `embed_documents` does not work as expected.
- **Description**: the current implementation uses `encode_as_sequence`
for encoding documents. This is incorrect, as `encode_as_sequence`
creates token embeddings and not mean embeddings. The normal `encode`
function handles both single and batched inputs and should be used
instead. The return type was also incorrect, as encode returns a NumPy
array. This PR converts the embedding to a list so that the output is
consistent with the Embeddings ABC.
- **Description:** The current version of the `delete` method assumes
that the id field will always be called `id`.
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** ugh, Twitter :D
---
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** `requests_kwargs` is not being passed to `_fetch`
which is fetching pages asynchronously. In this PR, making sure that we
are passing `requests_kwargs` to `_fetch` just like `_scrape`.
- **Issue:** #28634
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [ ] Main note
- **Description:** I added notes on the Jina and LocalAI pages telling
users that they must be using this integrations with openai sdk version
0.x, because if they dont they will get an error saying that "openai has
no attribute error". This PR was recommended by @efriis
- **Issue:** warns people about the issue in #28529
- **Dependencies:** None
- **Twitter handle:** JoaqCore
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:**: In the event of a Rate Limit Error from the
MistralAI server, the response JSON raises a KeyError. To address this,
a simple retry mechanism has been implemented to handle cases where the
request limit is exceeded.
- **Issue:** #27790
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: The multimodal(tongyi) response format "message": {"role":
"assistant", "content": [{"text": "图像"}]}}]} is not compatible with
LangChain.
Dependencies: No
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**:
This PR modifies the doc_intelligence.py parser in the community package
to include all metadata returned by the Azure Doc Intelligence API in
the Document object. Previously, only the parsed content (markdown) was
retained, while other important metadata such as bounding boxes (bboxes)
for images and tables was discarded. These image bboxes are crucial for
supporting use cases like multi-modal RAG workflows when using Azure Doc
Intelligence.
The change ensures that all information returned by the Azure Doc
Intelligence API is preserved by setting the metadata attribute of the
Document object to the entire result returned by the API, rather than an
empty dictionary. This extends the parser's utility for complex use
cases without breaking existing functionality.
**Issue**:
This change does not address a specific issue number, but it resolves a
critical limitation in supporting multimodal workflows when using the
LangChain wrapper for the Azure API.
**Dependencies**:
No additional dependencies are required for this change.
---------
Co-authored-by: jmohren <johannes.mohren@aol.de>
**Description:**
- **Memgraph** no longer relies on `Neo4jGraphStore` but **implements
`GraphStore`**, just like other graph databases.
- **Memgraph** no longer relies on `GraphQAChain`, but implements
`MemgraphQAChain`, just like other graph databases.
- The refresh schema procedure has been updated to try using `SHOW
SCHEMA INFO`. The fallback uses Cypher queries (a combination of schema
and Cypher) → **LangChain integration no longer relies on MAGE
library**.
- The **schema structure** has been reformatted. Regardless of the
procedures used to get schema, schema structure is the same.
- The `add_graph_documents()` method has been implemented. It transforms
`GraphDocument` into Cypher queries and creates a graph in Memgraph. It
implements the ability to use `baseEntityLabel` to improve speed
(`baseEntityLabel` has an index on the `id` property). It also
implements the ability to include sources by creating a `MENTIONS`
relationship to the source document.
- Jupyter Notebook for Memgraph has been updated.
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** supe_katarina (DX Engineer @ Memgraph)
Closes#25606
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
Docs on how to do hybrid search with weaviate is covered
[here](https://python.langchain.com/docs/integrations/vectorstores/weaviate/)
@efriis
---------
Co-authored-by: pookam90 <pookam@microsoft.com>
Co-authored-by: Pooja Kamath <60406274+Pookam90@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
This PR updates the `as_retriever` method in the `AzureSearch` to ensure
that the `search_type` parameter defaults to 'similarity' when not
explicitly provided.
Previously, if the `search_type` was omitted, it did not default to any
specific value. So it was inherited from
`AzureSearchVectorStoreRetriever`, which defaults to 'hybrid'.
This change ensures that the intended default behavior aligns with the
expected usage.
**Issue**
No specific issue was found related to this change.
**Dependencies**
No new dependencies are introduced with this change.
---------
Co-authored-by: prrao87 <prrao87@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "community: Kuzu - Add graph documents via
LLMGraphTransformer"
- This PR adds a new method `add_graph_documents` to use the
`GraphDocument`s extracted by `LLMGraphTransformer` and store in a Kùzu
graph backend.
- This allows users to transform unstructured text into a graph that
uses Kùzu as the graph store.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: pookam90 <pookam@microsoft.com>
Co-authored-by: Pooja Kamath <60406274+Pookam90@users.noreply.github.com>
Co-authored-by: hsm207 <hsm207@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Adding Documentation for new SQL Server Vector Store
Package.
Changed files -
Added new Vector Store -
docs\docs\integrations\vectorstores\sqlserver.ipynb
FeatureTable.Js - docs\src\theme\FeatureTables.js
Microsoft.mdx - docs\docs\integrations\providers\microsoft.mdx
Detailed documentation on API -
https://python.langchain.com/api_reference/sqlserver/index.html
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [ ] **PR title**: "core: google docstring parsing fix"
- [x] **PR message**:
- **Description:** Added a solution for invalid parsing of google
docstring such as:
Args:
net_annual_income (float): The user's net annual income (in current year
dollars).
- **Issue:** Previous code would return arg = "net_annual_income
(float)" which would cause exception in
_validate_docstring_args_against_annotations
- **Dependencies:** None
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- **Description:** I realized the invocation parameters were not being
passed into `_generate` so I added those in but then realized that the
parameters contained some old fields designed for an older openai client
which I removed. Parameters work fine now.
- **Issue:** Fixes#28229
- **Dependencies:** No new dependencies.
- **Twitter handle:** @arch_plane
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
## Description
First of all, thanks for the great framework that is LangChain!
At [Linkup](https://www.linkup.so/) we're working on an API to connect
LLMs and agents to the internet and our partner sources. We'd be super
excited to see our API integrated in LangChain! This essentially
consists in adding a LangChain retriever and tool, which is done in our
own [package](https://pypi.org/project/langchain-linkup/). Here we're
simply following the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
and update the documentation of LangChain to mention the Linkup
integration.
We do have tests (both units & integration) in our [source
code](https://github.com/LinkupPlatform/langchain-linkup), and tried to
follow as close as possible the [integration
documentation](https://python.langchain.com/docs/contributing/how_to/integrations/)
which specifically requests to focus on documentation changes for an
integration PR, so I'm not adding tests here, even though the PR
checklist seems to suggest so. Feel free to correct me if I got this
wrong!
By the way, we would be thrilled by being mentioned in the list of
providers which have standalone packages
[here](https://langchain-git-fork-linkupplatform-cj-doc-langchain.vercel.app/docs/integrations/providers/),
is there something in particular for us to do for that? 🙂
## Twitter handle
Linkup_platform
<!--
## PR Checklist
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
--!>
set open_browser to false to resolve "could not locate runnable browser"
error while default browser is None
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "infra: ..."
for CI changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Erick Friis <erick@langchain.dev>
# What problem are we fixing?
Currently documents loaded using `O365BaseLoader` fetch source from
`file.web_url` (where `file` is `<class 'O365.drive.File'>`). This works
well for `.pdf` documents. Unfortunately office documents (`.xlsx`,
`.docx` ...) pass their `web_url` in following format:
`https://sharepoint_address/sites/path/to/library/root/Doc.aspx?sourcedoc=%XXXXXXXX-1111-1111-XXXX-XXXXXXXXXX%7D&file=filename.xlsx&action=default&mobileredirect=true`
This obfuscates the path to the file. This PR utilizes the parrent
folder's path and file name to reconstruct the actual location of the
file. Knowing the file's location can be crucial for some RAG
applications (path to the file can carry information we don't want to
loose).
@vbarda Could you please look at this one? I'm @-mentioning you since
we've already closed some PRs together :-)
Co-authored-by: Erick Friis <erick@langchain.dev>
## **Description:**
Enable `ConfluenceLoader` to include labels with `include_labels` option
(`false` by default for backward compatibility). and the labels are set
to `metadata` in the `Document`. e.g. `{"labels": ["l1", "l2"]}`
## Notes
Confluence API supports to get labels by providing `metadata.labels` to
`expand` query parameter
All of the following functions support `expand` in the same way:
- confluence.get_page_by_id
- confluence.get_all_pages_by_label
- confluence.get_all_pages_from_space
- cql (internally using
[/api/content/search](https://developer.atlassian.com/cloud/confluence/rest/v1/api-group-content/#api-wiki-rest-api-content-search-get))
## **Issue:**
No issue related to this PR.
## **Dependencies:**
No changes.
## **Twitter handle:**
[@gymnstcs](https://x.com/gymnstcs)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Support for new Pinecone class PineconeVectorStore in
PebbloRetrievalQA.
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** -
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Streaming response from Mistral model using Vertex AI
raises KeyError when trying to access `choices` key, that the last chunk
doesn't have. The fix is to access the key safely using `get()`.
- **Issue:** https://github.com/langchain-ai/langchain/issues/27886
- **Dependencies:**
- **Twitter handle:**