Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core, etc. is
being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [ ] **description**
langchain_core.runnables.graph_mermaid.draw_mermaid_png calls this
function, but the Mermaid API returns JPEG by default. To be consistent,
add the option `file_type` with the default `png` type.
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
With this small change, I didn't add tests and docs.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more:
One long sentence was divided into two.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Now `encode_kwargs` used for both for documents and queries and this
leads to wrong embeddings. E. g.:
```python
model_kwargs = {"device": "cuda", "trust_remote_code": True}
encode_kwargs = {"normalize_embeddings": False, "prompt_name": "s2p_query"}
model = HuggingFaceEmbeddings(
model_name="dunzhang/stella_en_400M_v5",
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
query_embedding = np.array(
model.embed_query("What are some ways to reduce stress?",)
)
document_embedding = np.array(
model.embed_documents(
[
"There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
"Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
]
)
)
print(model._client.similarity(query_embedding, document_embedding)) # output: tensor([[0.8421, 0.3317]], dtype=torch.float64)
```
But from the [model
card](https://huggingface.co/dunzhang/stella_en_400M_v5#sentence-transformers)
expexted like this:
```python
model_kwargs = {"device": "cuda", "trust_remote_code": True}
encode_kwargs = {"normalize_embeddings": False}
query_encode_kwargs = {"normalize_embeddings": False, "prompt_name": "s2p_query"}
model = HuggingFaceEmbeddings(
model_name="dunzhang/stella_en_400M_v5",
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_encode_kwargs=query_encode_kwargs,
)
query_embedding = np.array(
model.embed_query("What are some ways to reduce stress?", )
)
document_embedding = np.array(
model.embed_documents(
[
"There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.",
"Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.",
]
)
)
print(model._client.similarity(query_embedding, document_embedding)) # tensor([[0.8398, 0.2990]], dtype=torch.float64)
```
- **Description:** Adding in the first pass of documentation for the CDP
Agentkit Toolkit
- **Issue:** N/a
- **Dependencies:** cdp-langchain
- **Twitter handle:** @CoinbaseDev
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: John Peterson <john.peterson@coinbase.com>
…Toolkit" in "playwright.ipynb" integration.
- Completed the incomplete sentence in the Langchain Playwright
documentation.
- Enhanced documentation clarity to guide users on best practices for
instantiating browser instances with Langchain Playwright.
Example before:
> "It's always recommended to instantiate using the from_browser method
so that the
Example after:
> "It's always recommended to instantiate using the `from_browser`
method so that the browser context is properly initialized and managed,
ensuring seamless interaction and resource optimization."
Co-authored-by: Erick Friis <erick@langchain.dev>
There was a change of attribute name which was "max_batch_size". It's
now "get_max_batch_size" method.
I want to use "create_batches" which is right down below.
Please check this PR link.
reference: https://github.com/chroma-core/chroma/pull/2305
---------
Signed-off-by: Prithvi Kannan <prithvi.kannan@databricks.com>
Co-authored-by: Prithvi Kannan <46332835+prithvikannan@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Jun Yamog <jkyamog@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ono-hiroki <86904208+ono-hiroki@users.noreply.github.com>
Co-authored-by: Dobiichi-Origami <56953648+Dobiichi-Origami@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Duy Huynh <vndee.huynh@gmail.com>
Co-authored-by: Rashmi Pawar <168514198+raspawar@users.noreply.github.com>
Co-authored-by: sifatj <26035630+sifatj@users.noreply.github.com>
Co-authored-by: Eric Pinzur <2641606+epinzur@users.noreply.github.com>
Co-authored-by: Daniel Vu Dao <danielvdao@users.noreply.github.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
Co-authored-by: Stéphane Philippart <wildagsx@gmail.com>
- **Description:** change to do the batch embedding server side and not
client side
- **Twitter handle:** @wildagsx
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Description:
This fixes an issue that mistakenly created in
https://github.com/langchain-ai/langchain/pull/27253. The issue
currently exists only in `langchain-community==0.3.4`.
Test cases were added to prevent this issue in the future.
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description:
This PR sets a default value of `output_token_limit = 4000` for the
`PowerBIToolkit` to fix the unintentionally validation error.
### Problem:
When attempting to run a code snippet from [Langchain's PowerBI toolkit
documentation](https://python.langchain.com/v0.1/docs/integrations/toolkits/powerbi/)
to interact with a `PowerBIDataset`, the following error occurs:
```
pydantic.v1.error_wrappers.ValidationError: 1 validation error for QueryPowerBITool
output_token_limit
none is not an allowed value (type=type_error.none.not_allowed)
```
### Root Cause:
The issue arises because when creating a `QueryPowerBITool`, the
`output_token_limit` parameter is unintentionally set to `None`, which
is the current default for `PowerBIToolkit`. However, `QueryPowerBITool`
expects a default value of `4000` for `output_token_limit`. This
unintended override causes the error.
17659ca2cd/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py (L63)17659ca2cd/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py (L72-L79)17659ca2cd/libs/community/langchain_community/tools/powerbi/tool.py (L39)
### Solution:
To resolve this, the default value of `output_token_limit` is now
explicitly set to `4000` in `PowerBIToolkit` to prevent the accidental
assignment of `None`.
Co-authored-by: ccurme <chester.curme@gmail.com>
**Description:**
This PR addresses an issue in the CSVLoader example where data is not
defined, causing a NameError. The line `data = loader.load()` is added
to correctly assign the output of loader.load() to the data variable.
- **Description:**
Currently CommaSeparatedListOutputParser can't handle strings that may
contain commas within a column. It would parse any commas as the
delimiter.
Ex.
"foo, foo2", "bar", "baz"
It will create 4 columns: "foo", "foo2", "bar", "baz"
This should be 3 columns:
"foo, foo2", "bar", "baz"
- **Dependencies:**
Added 2 additional imports, but they are built in python packages.
import csv
from io import StringIO
- **Twitter handle:** @jkyamog
- [ ] **Add tests and docs**:
1. added simple unit test test_multiple_items_with_comma
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
Update references in Databricks integration page to reference our new
partner package databricks-langchain
https://github.com/databricks/databricks-ai-bridge/tree/main/integrations/langchain
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Prithvi Kannan <prithvi.kannan@databricks.com>