Description:Added documentation on Anthropic models on Vertex
@lkuligin for review
---------
Co-authored-by: adityarane@google.com <adityarane@google.com>
Refactors the docs build in order to:
- run the same `make build` command in both vercel and local build
- incrementally build artifacts in 2 distinct steps, instead of building
all docs in-place (in vercel) or in a _dist dir (locally)
Highlights:
- introduces `make build` in order to build the docs
- collects and generates all files for the build in
`docs/build/intermediate`
- renders those jupyter notebook + markdown files into
`docs/build/outputs`
And now the outputs to host are in `docs/build/outputs`, which will need
a vercel settings change.
Todo:
- [ ] figure out how to point the right directory (right now deleting
and moving docs dir in vercel_build.sh isn't great)
**Description:**
This pull request introduces a new feature for LangChain: the
integration with the Rememberizer API through a custom retriever.
This enables LangChain applications to allow users to load and sync
their data from Dropbox, Google Drive, Slack, their hard drive into a
vector database that LangChain can query. Queries involve sending text
chunks generated within LangChain and retrieving a collection of
semantically relevant user data for inclusion in LLM prompts.
User knowledge dramatically improved AI applications.
The Rememberizer integration will also allow users to access general
purpose vectorized data such as Reddit channel discussions and US
patents.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
https://twitter.com/Rememberizer
Vertex DIY RAG APIs helps to build complex RAG systems and provide more
granular control, and are suited for custom use cases.
The Ranking API takes in a list of documents and reranks those documents
based on how relevant the documents are to a given query. Compared to
embeddings that look purely at the semantic similarity of a document and
a query, the ranking API can give you a more precise score for how well
a document answers a given query.
[Reference](https://cloud.google.com/generative-ai-app-builder/docs/ranking)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
This pull request updates the Bagel Network package name from
"betabageldb" to "bagelML" to align with the latest changes made by the
Bagel Network team.
The following modifications have been made:
- Updated all references to the old package name ("betabageldb") with
the new package name ("bagelML") throughout the codebase.
- Modified the documentation, and any relevant scripts to reflect the
package name change.
- Tested the changes to ensure that the functionality remains intact and
no breaking changes were introduced.
By merging this pull request, our project will stay up to date with the
latest Bagel Network package naming convention, ensuring compatibility
and smooth integration with their updated library.
Please review the changes and provide any feedback or suggestions. Thank
you!
**Description:** Update UpstageLayoutAnalysisParser and Loader and add
upstage loader example in pdf section
**Dependencies:** langchain_community
**Twitter handle:** [@upstageai](https://twitter.com/upstageai)
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
**Issue:**
Currently `AzureSearch` vector store does not implement `delete` method.
This PR implements it. This also makes it compatible with LangChain
indexer.
**Dependencies:**
None
**Twitter handle:**
@martintriska1
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Adding `UpstashVectorStore` to utilize [Upstash
Vector](https://upstash.com/docs/vector/overall/getstarted)!
#17012 was opened to add Upstash Vector to langchain but was closed to
wait for filtering. Now filtering is added to Upstash vector and we open
a new PR. Additionally, [embedding
feature](https://upstash.com/docs/vector/features/embeddingmodels) was
added and we add this to our vectorstore aswell.
## Dependencies
[upstash-vector](https://pypi.org/project/upstash-vector/) should be
installed to use `UpstashVectorStore`. Didn't update dependencies
because of [this comment in the previous
PR](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1876522450).
## Tests
Tests are added and they pass. Tests are naturally network bound since
Upstash Vector is offered through an API.
There was [a discussion in the previous PR about mocking the
unittests](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1891820567).
We didn't make changes to this end yet. We can update the tests if you
can explain how the tests should be mocked.
---------
Co-authored-by: ytkimirti <yusuftaha9@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.
Includes unit test and two notebooks to demonstrate usage.
**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin
---------
Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None
---------
Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Document: Updated google_drive,ipynb for loading following extended
metadata.
- full_path - Full path of the file/s in google drive.
- owner - owner of the file/s.
- size - size of the file/s.
Code changes:
[langchain-google/pull/179.](https://github.com/langchain-ai/langchain-google/pull/179)
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "docs: switched GCSLoaders docs to
langchain-google-community"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** switched GCSLoaders docs to
langchain-google-community
Implemented bind_tools for OllamaFunctions.
Made OllamaFunctions sub class of ChatOllama.
Implemented with_structured_output for OllamaFunctions.
integration unit test has been updated.
notebook has been updated.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added langchainhub package in import statement which is required for
"from langchain import hub" to work.
Added sample code to add OpenAI key
Co-authored-by: Chi Yan Tang <100466443+poochiekittie@users.noreply.github.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
MindsDB integrates with LangChain, enabling users to deploy, serve, and
fine-tune models available via LangChain within MindsDB, making them
accessible to numerous data sources.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
* Groundedness Check takes `str` or `list[Document]` as input.
* Deprecate `GroundednessCheck` due to its naming.
* Added `UpstageGroundednessCheck`.
* Hotfix for Groundedness Check parameter.
The name `query` was misleading and it should be `answer` instead.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [ ] **Kinetica Document Loader**: "community: a class to load
Documents from Kinetica"
- [ ] **Kinetica Document Loader**:
- **Description:** implemented KineticaLoader in `kinetica_loader.py`
- **Dependencies:** install the Kinetica API using `pip install
gpudb==7.2.0.1 `
- **Description**:
- **add support for more data types**: by default `IpexLLM` will load
the model in int4 format. This PR adds more data types support such as
`sym_in5`, `sym_int8`, etc. Data formats like NF3, NF4, FP4 and FP8 are
only supported on GPU and will be added in future PR.
- Fix a small issue in saving/loading, update api docs
- **Dependencies**: `ipex-llm` library
- **Document**: In `docs/docs/integrations/llms/ipex_llm.ipynb`, added
instructions for saving/loading low-bit model.
- **Tests**: added new test cases to
`libs/community/tests/integration_tests/llms/test_ipex_llm.py`, added
config params.
- **Contribution maintainer**: @shane-huang
Description: Add support for Semantic topics and entities.
Classification done by pebblo-server is not used to enhance metadata of
Documents loaded by document loaders.
Dependencies: None
Documentation: Updated.
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
**Description:**
This PR removes an unnecessary code snippet from the documentation. The
snippet in question is not relevant to the content and does not
contribute to the overall understanding of the topic. It contained
redundant imports and unused code, potentially causing confusion for
readers.
**Issue:**
There is no specific issue number associated with this change.
**Dependencies:**
No additional dependencies are required for this change.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
**Description:** In VoyageAI text-embedding examples use voyage-law-2
model
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.