To permit proper coercion of objects like the following:
```python
class MyAsyncCallable:
async def __call__(self, foo):
return await ...
class MyAsyncGenerator:
async def __call__(self, foo):
await ...
yield
```
This PR introduces a v2 implementation of astream events that removes
intermediate abstractions and fixes some issues with v1 implementation.
The v2 implementation significantly reduces relevant code that's
associated with the astream events implementation together with
overhead.
After this PR, the astream events implementation:
- Uses an async callback handler
- No longer relies on BaseTracer
- No longer relies on json patch
As a result of this re-write, a number of issues were discovered with
the existing implementation.
## Changes in V2 vs. V1
### on_chat_model_end `output`
The outputs associated with `on_chat_model_end` changed depending on
whether it was within a chain or not.
As a root level runnable the output was:
```python
"data": {"output": AIMessageChunk(content="hello world!", id='some id')}
```
As part of a chain the output was:
```
"data": {
"output": {
"generations": [
[
{
"generation_info": None,
"message": AIMessageChunk(
content="hello world!", id=AnyStr()
),
"text": "hello world!",
"type": "ChatGenerationChunk",
}
]
],
"llm_output": None,
}
},
```
After this PR, we will always use the simpler representation:
```python
"data": {"output": AIMessageChunk(content="hello world!", id='some id')}
```
**NOTE** Non chat models (i.e., regular LLMs) are still associated with
the more verbose format.
### Remove some `_stream` events
`on_retriever_stream` and `on_tool_stream` events were removed -- these
were not real events, but created as an artifact of implementing on top
of astream_log.
The same information is already available in the `x_on_end` events.
### Propagating Names
Names of runnables have been updated to be more consistent
```python
model = GenericFakeChatModel(messages=infinite_cycle).configurable_fields(
messages=ConfigurableField(
id="messages",
name="Messages",
description="Messages return by the LLM",
)
)
```
Before:
```python
"name": "RunnableConfigurableFields",
```
After:
```python
"name": "GenericFakeChatModel",
```
### on_retriever_end
on_retriever_end will always return `output` which is a list of
documents (rather than a dict containing a key called "documents")
### Retry events
Removed the `on_retry` callback handler. It was incorrectly showing that
the failed function being retried has invoked `on_chain_end`
https://github.com/langchain-ai/langchain/pull/21638/files#diff-e512e3f84daf23029ebcceb11460f1c82056314653673e450a5831147d8cb84dL1394
Add unit tests that show differences between sync / async versions when
streaming.
The inner on_chain_chunk event is missing if mixing sync and async
functionality. Likely due to missing tap_output_iter implementation on
the sync variant of `_transform_stream_with_config`
0.2 is not a breaking release for core (but it is for langchain and
community)
To keep the core+langchain+community packages in sync at 0.2, we will
relax deps throughout the ecosystem to tolerate `langchain-core` 0.2
## Description
This PR introduces the new `langchain-qdrant` partner package, intending
to deprecate the community package.
## Changes
- Moved the Qdrant vector store implementation `/libs/partners/qdrant`
with integration tests.
- The conditional imports of the client library are now regular with
minor implementation improvements.
- Added a deprecation warning to
`langchain_community.vectorstores.qdrant.Qdrant`.
- Replaced references/imports from `langchain_community` with either
`langchain_core` or by moving the definitions to the `langchain_qdrant`
package itself.
- Updated the Qdrant vector store documentation to reflect the changes.
## Testing
- `QDRANT_URL` and
[`QDRANT_API_KEY`](583e36bf6b)
env values need to be set to [run integration
tests](d608c93d1f)
in the [cloud](https://cloud.qdrant.tech).
- If a Qdrant instance is running at `http://localhost:6333`, the
integration tests will use it too.
- By default, tests use an
[`in-memory`](https://github.com/qdrant/qdrant-client?tab=readme-ov-file#local-mode)
instance(Not comprehensive).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
This PR makes some small updates for `KuzuQAChain` for graph QA.
- Updated Cypher generation prompt (we now support `WHERE EXISTS`) and
generalize it more
- Support different LLMs for Cypher generation and QA
- Update docs and examples
First Pr for the langchain_huggingface partner Package
- Moved some of the hugging face related class from `community` to the
new `partner package`
Still needed :
- Documentation
- Tests
- Support for the new apply_chat_template in `ChatHuggingFace`
- Confirm choice of class to support for embeddings witht he
sentence-transformer team.
cc : @efriis
---------
Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- Introduce the `merge_and_split` function in the
`UpstageLayoutAnalysisLoader`.
- The `merge_and_split` function takes a list of documents and a
splitter as inputs.
- This function merges all documents and then divides them using the
`split_documents` method, which is a proprietary function of the
splitter.
- If the provided splitter is `None` (which is the default setting), the
function will simply merge the documents without splitting them.
Adds a Python REPL that executes code in a code interpreter session
using Azure Container Apps dynamic sessions.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [X] **PR title**: "community: Add source metadata to bedrock retriever
response"
- [X] **PR message**:
- **Description:** Bedrock retrieve API returns extra metadata in the
response which is currently not returned in the retriever response
- **Issue:** The change adds the metadata from bedrock retrieve API
response to the bedrock retriever in a backward compatible way. Renamed
metadata to sourceMetadata as metadata term is being used in the
Document already. This is in sync with what we are doing in llama-index
as well.
- **Dependencies:** No
- [X] **Add tests and docs**:
1. Added unit tests
2. Notebook already exists and does not need any change
3. Response from end to end testing, just to ensure backward
compatibility: `[Document(page_content='Exoplanets.',
metadata={'location': {'s3Location': {'uri':
's3://bucket/file_name.txt'}, 'type': 'S3'}, 'score': 0.46886647,
'source_metadata': {'x-amz-bedrock-kb-source-uri':
's3://bucket/file_name.txt', 'tag': 'space', 'team': 'Nasa', 'year':
1946.0}})]`
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>