{ "cells": [ { "cell_type": "code", "execution_count": 5, "id": "081420ea", "metadata": {}, "outputs": [], "source": [ "words = [\"sane\", \"direct\", \"informally\", \"unpopular\", \"subtractive\", \"nonresidential\",\n", " \"inexact\", \"uptown\", \"incomparable\", \"powerful\", \"gaseous\", \"evenly\", \"formality\",\n", " \"deliberately\", \"off\"]\n", "antonyms = [\"insane\", \"indirect\", \"formally\", \"popular\", \"additive\", \"residential\",\n", " \"exact\", \"downtown\", \"comparable\", \"powerless\", \"solid\", \"unevenly\", \"informality\",\n", " \"accidentally\", \"on\"]\n", "data = (words, antonyms)" ] }, { "cell_type": "code", "execution_count": 6, "id": "6c7c00b7", "metadata": {}, "outputs": [], "source": [ "examples = [f\"INPUT: {i}\\nOUTPUT: {j}\" for i, j in zip(words, antonyms)]" ] }, { "cell_type": "code", "execution_count": 2, "id": "70d4ea31", "metadata": {}, "outputs": [], "source": [ "from langchain.chains.ape.base import APEChain\n", "from langchain.llms import OpenAI" ] }, { "cell_type": "code", "execution_count": 3, "id": "f64829c4", "metadata": {}, "outputs": [], "source": [ "llm = OpenAI()" ] }, { "cell_type": "code", "execution_count": 4, "id": "0663e721", "metadata": {}, "outputs": [], "source": [ "chain = APEChain(llm=llm)" ] }, { "cell_type": "code", "execution_count": 7, "id": "4d65f1ee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "' reverse the input.'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chain.ape(examples)" ] }, { "cell_type": "code", "execution_count": null, "id": "3bd0bd06", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }