"""Test Perplexity Chat API wrapper.""" import os from typing import Any, Dict, List, Optional, Tuple, Type from unittest.mock import MagicMock import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessageChunk, BaseMessageChunk from langchain_tests.unit_tests import ChatModelUnitTests from pytest_mock import MockerFixture from langchain_community.chat_models import ChatPerplexity os.environ["PPLX_API_KEY"] = "foo" @pytest.mark.requires("openai") class TestPerplexityStandard(ChatModelUnitTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return ChatPerplexity @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: return ( {"PPLX_API_KEY": "api_key"}, {}, {"pplx_api_key": "api_key"}, ) @pytest.mark.requires("openai") def test_perplexity_model_name_param() -> None: llm = ChatPerplexity(model="foo") # type: ignore[call-arg] assert llm.model == "foo" @pytest.mark.requires("openai") def test_perplexity_model_kwargs() -> None: llm = ChatPerplexity(model="test", model_kwargs={"foo": "bar"}) # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} @pytest.mark.requires("openai") def test_perplexity_initialization() -> None: """Test perplexity initialization.""" # Verify that chat perplexity can be initialized using a secret key provided # as a parameter rather than an environment variable. for model in [ ChatPerplexity( # type: ignore[call-arg] model="test", timeout=1, api_key="test", temperature=0.7, verbose=True ), ChatPerplexity( # type: ignore[call-arg] model="test", request_timeout=1, pplx_api_key="test", temperature=0.7, verbose=True, ), ]: assert model.request_timeout == 1 assert model.pplx_api_key == "test" @pytest.mark.requires("openai") def test_perplexity_stream_includes_citations(mocker: MockerFixture) -> None: """Test that the stream method includes citations in the additional_kwargs.""" llm = ChatPerplexity( model="test", timeout=30, verbose=True, ) mock_chunk_0 = { "choices": [ { "delta": { "content": "Hello ", }, "finish_reason": None, } ], "citations": ["example.com", "example2.com"], } mock_chunk_1 = { "choices": [ { "delta": { "content": "Perplexity", }, "finish_reason": None, } ], "citations": ["example.com", "example2.com"], } mock_chunks: List[Dict[str, Any]] = [mock_chunk_0, mock_chunk_1] mock_stream = MagicMock() mock_stream.__iter__.return_value = mock_chunks patcher = mocker.patch.object( llm.client.chat.completions, "create", return_value=mock_stream ) stream = llm.stream("Hello langchain") full: Optional[BaseMessageChunk] = None for i, chunk in enumerate(stream): full = chunk if full is None else full + chunk assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"] if i == 0: assert chunk.additional_kwargs["citations"] == [ "example.com", "example2.com", ] else: assert "citations" not in chunk.additional_kwargs assert isinstance(full, AIMessageChunk) assert full.content == "Hello Perplexity" assert full.additional_kwargs == {"citations": ["example.com", "example2.com"]} patcher.assert_called_once()