import os from unittest.mock import patch import pytest from langchain_openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = "foo" def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAIEmbeddings(model_kwargs={"model": "foo"}) def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAIEmbeddings(foo="bar") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} def test_embed_documents_with_custom_chunk_size() -> None: embeddings = OpenAIEmbeddings(chunk_size=2, check_embedding_ctx_length=False) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] result = embeddings.embed_documents(texts, chunk_size=custom_chunk_size) mock_create.call_args mock_create.assert_any_call(input=texts[0:3], **embeddings._invocation_params) mock_create.assert_any_call(input=texts[3:4], **embeddings._invocation_params) assert result == [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]]