"""Question answering over a graph.""" from __future__ import annotations from typing import Any, Dict, List, Optional from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, GREMLIN_GENERATION_PROMPT, ) from langchain_community.graphs.hugegraph import HugeGraph class HugeGraphQAChain(Chain): """Chain for question-answering against a graph by generating gremlin statements. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ graph: HugeGraph = Field(exclude=True) gremlin_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: allow_dangerous_requests: bool = False """Forced user opt-in to acknowledge that the chain can make dangerous requests. *Security note*: Make sure that the database connection uses credentials that are narrowly-scoped to only include necessary permissions. Failure to do so may result in data corruption or loss, since the calling code may attempt commands that would result in deletion, mutation of data if appropriately prompted or reading sensitive data if such data is present in the database. The best way to guard against such negative outcomes is to (as appropriate) limit the permissions granted to the credentials used with this tool. See https://python.langchain.com/docs/security for more information. """ def __init__(self, **kwargs: Any) -> None: """Initialize the chain.""" super().__init__(**kwargs) if self.allow_dangerous_requests is not True: raise ValueError( "In order to use this chain, you must acknowledge that it can make " "dangerous requests by setting `allow_dangerous_requests` to `True`." "You must narrowly scope the permissions of the database connection " "to only include necessary permissions. Failure to do so may result " "in data corruption or loss or reading sensitive data if such data is " "present in the database." "Only use this chain if you understand the risks and have taken the " "necessary precautions. " "See https://python.langchain.com/docs/security for more information." ) @property def input_keys(self) -> List[str]: """Input keys. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Output keys. :meta private: """ _output_keys = [self.output_key] return _output_keys @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, gremlin_prompt: BasePromptTemplate = GREMLIN_GENERATION_PROMPT, **kwargs: Any, ) -> HugeGraphQAChain: """Initialize from LLM.""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) gremlin_generation_chain = LLMChain(llm=llm, prompt=gremlin_prompt) return cls( qa_chain=qa_chain, gremlin_generation_chain=gremlin_generation_chain, **kwargs, ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Generate gremlin statement, use it to look up in db and answer question.""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] generated_gremlin = self.gremlin_generation_chain.run( {"question": question, "schema": self.graph.get_schema}, callbacks=callbacks ) _run_manager.on_text("Generated gremlin:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_gremlin, color="green", end="\n", verbose=self.verbose ) context = self.graph.query(generated_gremlin) _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) return {self.output_key: result[self.qa_chain.output_key]}