"""Writer chat wrapper.""" from __future__ import annotations import logging from typing import ( Any, AsyncIterator, Callable, Dict, Iterator, List, Literal, Mapping, Optional, Sequence, Tuple, Type, Union, ) from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models import LanguageModelInput from langchain_core.language_models.chat_models import ( BaseChatModel, agenerate_from_stream, generate_from_stream, ) from langchain_core.messages import ( AIMessage, AIMessageChunk, BaseMessage, ChatMessage, HumanMessage, SystemMessage, ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_to_openai_tool from pydantic import BaseModel, ConfigDict, Field, SecretStr logger = logging.getLogger(__name__) def _convert_message_to_dict(message: BaseMessage) -> dict: """Convert a LangChain message to a Writer message dict.""" message_dict = {"role": "", "content": message.content} if isinstance(message, ChatMessage): message_dict["role"] = message.role elif isinstance(message, HumanMessage): message_dict["role"] = "user" elif isinstance(message, AIMessage): message_dict["role"] = "assistant" if message.tool_calls: message_dict["tool_calls"] = [ { "id": tool["id"], "type": "function", "function": {"name": tool["name"], "arguments": tool["args"]}, } for tool in message.tool_calls ] elif isinstance(message, SystemMessage): message_dict["role"] = "system" elif isinstance(message, ToolMessage): message_dict["role"] = "tool" message_dict["tool_call_id"] = message.tool_call_id else: raise ValueError(f"Got unknown message type: {type(message)}") if message.name: message_dict["name"] = message.name return message_dict def _convert_dict_to_message(response_dict: Dict[str, Any]) -> BaseMessage: """Convert a Writer message dict to a LangChain message.""" role = response_dict["role"] content = response_dict.get("content", "") if role == "user": return HumanMessage(content=content) elif role == "assistant": additional_kwargs = {} if tool_calls := response_dict.get("tool_calls"): additional_kwargs["tool_calls"] = tool_calls return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=content) elif role == "tool": return ToolMessage( content=content, tool_call_id=response_dict["tool_call_id"], name=response_dict.get("name"), ) else: return ChatMessage(content=content, role=role) class ChatWriter(BaseChatModel): """Writer chat model. To use, you should have the ``writer-sdk`` Python package installed, and the environment variable ``WRITER_API_KEY`` set with your API key. Example: .. code-block:: python from langchain_community.chat_models import ChatWriter chat = ChatWriter(model="palmyra-x-004") """ client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="palmyra-x-004", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" writer_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") """Writer API key.""" writer_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL for API requests.""" streaming: bool = False """Whether to stream the results or not.""" n: int = 1 """Number of chat completions to generate for each prompt.""" max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" model_config = ConfigDict(populate_by_name=True) @property def _llm_type(self) -> str: """Return type of chat model.""" return "writer-chat" @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model_name": self.model_name, "temperature": self.temperature, "streaming": self.streaming, **self.model_kwargs, } def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: generations = [] for choice in response["choices"]: message = _convert_dict_to_message(choice["message"]) gen = ChatGeneration( message=message, generation_info=dict(finish_reason=choice.get("finish_reason")), ) generations.append(gen) token_usage = response.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model_name, "system_fingerprint": response.get("system_fingerprint", ""), } return ChatResult(generations=generations, llm_output=llm_output) def _convert_messages_to_dicts( self, messages: List[BaseMessage], stop: Optional[List[str]] = None ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: params = { "model": self.model_name, "temperature": self.temperature, "n": self.n, "stream": self.streaming, **self.model_kwargs, } if stop: params["stop"] = stop if self.max_tokens is not None: params["max_tokens"] = self.max_tokens message_dicts = [_convert_message_to_dict(m) for m in messages] return message_dicts, params def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._convert_messages_to_dicts(messages, stop) params = {**params, **kwargs, "stream": True} response = self.client.chat.chat(messages=message_dicts, **params) for chunk in response: delta = chunk["choices"][0].get("delta") if not delta or not delta.get("content"): continue chunk = _convert_dict_to_message( {"role": "assistant", "content": delta["content"]} ) chunk = ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token(chunk.text) yield chunk async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._convert_messages_to_dicts(messages, stop) params = {**params, **kwargs, "stream": True} response = await self.async_client.chat.chat(messages=message_dicts, **params) async for chunk in response: delta = chunk["choices"][0].get("delta") if not delta or not delta.get("content"): continue chunk = _convert_dict_to_message( {"role": "assistant", "content": delta["content"]} ) chunk = ChatGenerationChunk(message=chunk) if run_manager: await run_manager.on_llm_new_token(chunk.text) yield chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: return generate_from_stream( self._stream(messages, stop, run_manager, **kwargs) ) message_dicts, params = self._convert_messages_to_dicts(messages, stop) params = {**params, **kwargs} response = self.client.chat.chat(messages=message_dicts, **params) return self._create_chat_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.streaming: return await agenerate_from_stream( self._astream(messages, stop, run_manager, **kwargs) ) message_dicts, params = self._convert_messages_to_dicts(messages, stop) params = {**params, **kwargs} response = await self.async_client.chat.chat(messages=message_dicts, **params) return self._create_chat_result(response) @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Writer API.""" return { "model": self.model_name, "temperature": self.temperature, "stream": self.streaming, "n": self.n, "max_tokens": self.max_tokens, **self.model_kwargs, } def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]], *, tool_choice: Optional[Union[str, Literal["auto", "none"]]] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tools to the chat model. Args: tools: Tools to bind to the model tool_choice: Which tool to require ('auto', 'none', or specific tool name) **kwargs: Additional parameters to pass to the chat model Returns: A runnable that will use the tools """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice: kwargs["tool_choice"] = ( (tool_choice) if tool_choice in ("auto", "none") else {"type": "function", "function": {"name": tool_choice}} ) return super().bind(tools=formatted_tools, **kwargs)