"""Test ChatDeepSeek chat model.""" from __future__ import annotations from typing import Optional import pytest from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessageChunk, BaseMessageChunk from langchain_core.tools import BaseTool from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_deepseek.chat_models import ChatDeepSeek class TestChatDeepSeek(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[ChatDeepSeek]: return ChatDeepSeek @property def chat_model_params(self) -> dict: # These should be parameters used to initialize your integration for testing return { "model": "deepseek-chat", "temperature": 0, } @property def supports_json_mode(self) -> bool: """(bool) whether the chat model supports JSON mode.""" return True @pytest.mark.xfail(reason="Not yet supported.") def test_tool_message_histories_list_content( self, model: BaseChatModel, my_adder_tool: BaseTool, ) -> None: super().test_tool_message_histories_list_content(model, my_adder_tool) @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content() -> None: """Test reasoning content.""" chat_model = ChatDeepSeek(model="deepseek-reasoner") response = chat_model.invoke("What is 3^3?") assert response.content assert response.additional_kwargs["reasoning_content"] raise ValueError @pytest.mark.xfail(reason="Takes > 30s to run.") def test_reasoning_content_streaming() -> None: chat_model = ChatDeepSeek(model="deepseek-reasoner") full: Optional[BaseMessageChunk] = None for chunk in chat_model.stream("What is 3^3?"): full = chunk if full is None else full + chunk assert isinstance(full, AIMessageChunk) assert full.additional_kwargs["reasoning_content"]