{ "cells": [ { "cell_type": "markdown", "id": "213a38a2", "metadata": {}, "source": [ "# Pandas DataFrame\n", "\n", "This notebook goes over how to load data from a [pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html) DataFrame." ] }, { "cell_type": "code", "execution_count": null, "id": "f6a7a9e4-80d6-486a-b2e3-636c568aa97c", "metadata": {}, "outputs": [], "source": [ "#!pip install pandas" ] }, { "cell_type": "code", "execution_count": 1, "id": "79331964", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "e487044c", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('example_data/mlb_teams_2012.csv')" ] }, { "cell_type": "code", "execution_count": 6, "id": "ac273ca1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | Team\n", " | \"Payroll (millions)\"\n", " | \"Wins\"\n", " | 
|---|---|---|---|
| 0\n", " | Nationals\n", " | 81.34\n", " | 98\n", " | 
| 1\n", " | Reds\n", " | 82.20\n", " | 97\n", " | 
| 2\n", " | Yankees\n", " | 197.96\n", " | 95\n", " | 
| 3\n", " | Giants\n", " | 117.62\n", " | 94\n", " | 
| 4\n", " | Braves\n", " | 83.31\n", " | 94\n", " |