{ "cells": [ { "cell_type": "markdown", "id": "6488fdaf", "metadata": {}, "source": [ "# Chat Prompt Template\n", "\n", "Chat Models takes a list of chat messages as input - this list commonly referred to as a prompt.\n", "Typically this is not simply a hardcoded list of messages but rather a combination of a template, some examples, and user input.\n", "LangChain provides several classes and functions to make constructing and working with prompts easy.\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "7647a621", "metadata": {}, "outputs": [], "source": [ "from langchain.prompts import (\n", " ChatPromptTemplate,\n", " PromptTemplate,\n", " SystemMessagePromptTemplate,\n", " AIMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n", ")\n", "from langchain.schema import (\n", " AIMessage,\n", " HumanMessage,\n", " SystemMessage\n", ")" ] }, { "cell_type": "markdown", "id": "acb4a2f6", "metadata": {}, "source": [ "You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n", "\n", "For convience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:" ] }, { "cell_type": "code", "execution_count": 2, "id": "3124f5e9", "metadata": {}, "outputs": [], "source": [ "template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n", "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n", "human_template=\"{text}\"\n", "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)" ] }, { "cell_type": "code", "execution_count": 3, "id": "9c7e2e6f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n", " HumanMessage(content='I love programming.', additional_kwargs={})]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n", "\n", "# get a chat completion from the formatted messages\n", "chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()" ] }, { "cell_type": "markdown", "id": "0dbdf94f", "metadata": {}, "source": [ "If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:" ] }, { "cell_type": "code", "execution_count": 8, "id": "5a8d249e", "metadata": {}, "outputs": [], "source": [ "prompt=PromptTemplate(\n", " template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", " input_variables=[\"input_language\", \"output_language\"],\n", ")\n", "system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }