{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/export/anaconda3/envs/langchainGLM6B/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "INFO 2023-08-28 18:26:07,485-1d: \n", "loading model config\n", "llm device: cuda\n", "embedding device: cuda\n", "dir: /data/zhx/zhx/langchain-ChatGLM_new\n", "flagging username: e2fc35b8e87c4de18d692e951a5f7c46\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Loading checkpoint shards: 100%|██████████| 7/7 [00:06<00:00, 1.01it/s]\n" ] } ], "source": [ "\n", "import os, sys, torch\n", "from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel\n", "from langchain import HuggingFacePipeline, ConversationChain\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "from langchain.vectorstores.vearch import VearchDb\n", "from langchain.document_loaders import TextLoader\n", "from langchain.prompts import PromptTemplate\n", "from langchain.chains import RetrievalQA\n", "from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n", "\n", "# your local model path\n", "model_path =\"/data/zhx/zhx/langchain-ChatGLM_new/chatglm2-6b\" \n", "\n", "tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)\n", "model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Human: 你好!\n", "ChatGLM:你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。\n", "\n", "Human: 你知道凌波微步吗,你知道都有谁学会了吗?\n", "ChatGLM:凌波微步是一种步伐,最早出自于《倚天屠龙记》。在小说中,灭绝师太曾因与练习凌波微步的杨过的恩怨纠葛,而留下了一部经书,内容是记载凌波微步的起源和作用。后来,凌波微步便成为杨过和小龙女的感情象征。在现实生活中,凌波微步是一句口号,是清华大学学生社团“模型社”的社训。\n", "\n" ] } ], "source": [ "query = \"你好!\"\n", "response, history = model.chat(tokenizer, query, history=[])\n", "print(f\"Human: {query}\\nChatGLM:{response}\\n\")\n", "query = \"你知道凌波微步吗,你知道都有谁学会了吗?\"\n", "response, history = model.chat(tokenizer, query, history=history)\n", "print(f\"Human: {query}\\nChatGLM:{response}\\n\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO 2023-08-28 18:27:36,037-1d: Load pretrained SentenceTransformer: /data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese\n", "WARNING 2023-08-28 18:27:36,038-1d: No sentence-transformers model found with name /data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese. Creating a new one with MEAN pooling.\n", "INFO 2023-08-28 18:27:38,936-1d: Use pytorch device: cuda\n" ] } ], "source": [ "# Add your local knowledge files\n", "file_path = \"/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt\"#Your local file path\"\n", "loader = TextLoader(file_path,encoding=\"utf-8\")\n", "documents = loader.load()\n", "\n", "# split text into sentences and embedding the sentences\n", "text_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size=500, chunk_overlap=100)\n", "texts = text_splitter.split_documents(documents)\n", "\n", "#your model path\n", "embedding_path = '/data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese'\n", "embeddings = HuggingFaceEmbeddings(model_name=embedding_path)\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Batches: 100%|██████████| 1/1 [00:00<00:00, 4.56it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "['7aae36236f784105a0004d8ff3c7c3ad', '7e495d4e5962497db2080e84d52e75ed', '9a640124fc324a8abb0eaa31acb638b7']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "#first add your document into vearch vectorstore\n", "vearch_db = VearchDb.from_documents(texts,embeddings,table_name=\"your_table_name\",metadata_path=\"/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/your_table_name\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Batches: 100%|██████████| 1/1 [00:00<00:00, 22.49it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "####################第1段相关文档####################\n", "\n", "午饭过后,段誉又练“凌波微步”,走一步,吸一口气,走第二步时将气呼出,六十四卦走完,四肢全无麻痹之感,料想呼吸顺畅,便无害处。第二次再走时连走两步吸一口气,再走两步始行呼出。这“凌波微步”是以动功修习内功,脚步踏遍六十四卦一个周天,内息自然而然地也转了一个周天。因此他每走一遍,内力便有一分进益。\n", "\n", "这般练了几天,“凌波微步”已走得颇为纯熟,不须再数呼吸,纵然疾行,气息也已无所窒滞。心意既畅,跨步时渐渐想到《洛神赋》中那些与“凌波微步”有关的句子:“仿佛兮若轻云之蔽月,飘飘兮若流风之回雪”,“竦轻躯以鹤立,若将飞而未翔”,“体迅飞凫,飘忽若神”,“动无常则,若危若安。进止难期,若往若还”。\n", "\n", "\n", "\n", "百度简介\n", "\n", "凌波微步是「逍遥派」独门轻功身法,精妙异常。\n", "\n", "凌波微步乃是一门极上乘的轻功,所以列于卷轴之末,以易经八八六十四卦为基础,使用者按特定顺序踏着卦象方位行进,从第一步到最后一步正好行走一个大圈。此步法精妙异常,原是要待人练成「北冥神功」,吸人内力,自身内力已【颇为深厚】之后再练。\n", "\n", "####################第2段相关文档####################\n", "\n", "《天龙八部》第五回 微步縠纹生\n", "\n", "卷轴中此外诸种经脉修习之法甚多,皆是取人内力的法门,段誉虽自语宽解,总觉习之有违本性,单是贪多务得,便非好事,当下暂不理会。\n", "\n", "卷到卷轴末端,又见到了“凌波微步”那四字,登时便想起《洛神赋》中那些句子来:“凌波微步,罗袜生尘……转眄流精,光润玉颜。含辞未吐,气若幽兰。华容婀娜,令我忘餐。”曹子建那些千古名句,在脑海中缓缓流过:“秾纤得衷,修短合度,肩若削成,腰如约素。延颈秀项,皓质呈露。芳泽无加,铅华弗御。云髻峨峨,修眉连娟。丹唇外朗,皓齿内鲜。明眸善睐,靥辅承权。瑰姿艳逸,仪静体闲。柔情绰态,媚于语言……”这些句子用在木婉清身上,“这话倒也有理”;但如用之于神仙姊姊,只怕更为适合。想到神仙姊姊的姿容体态,“皎若太阳升朝霞,灼若芙蓉出绿波”,但觉依她吩咐行事,实为人生至乐,心想:“我先来练这‘凌波微步’,此乃逃命之妙法,非害人之手段也,练之有百利而无一害。”\n", "\n", "####################第3段相关文档####################\n", "\n", "《天龙八部》第二回 玉壁月华明\n", "\n", "再展帛卷,长卷上源源皆是裸女画像,或立或卧,或现前胸,或见后背。人像的面容都是一般,但或喜或愁,或含情凝眸,或轻嗔薄怒,神情各异。一共有三十六幅图像,每幅像上均有颜色细线,注明穴道部位及练功法诀。\n", "\n", "帛卷尽处题着“凌波微步”四字,其后绘的是无数足印,注明“妇妹”、“无妄”等等字样,尽是《易经》中的方位。段誉前几日还正全心全意地钻研《易经》,一见到这些名称,登时精神大振,便似遇到故交良友一般。只见足印密密麻麻,不知有几千百个,自一个足印至另一个足印均有绿线贯串,线上绘有箭头,最后写着一行字道:“步法神妙,保身避敌,待积内力,再取敌命。”\n", "\n", "段誉心道:“神仙姊姊所遗的步法,必定精妙之极,遇到强敌时脱身逃走,那就很好,‘再取敌命’也就不必了。”\n", "卷好帛卷,对之作了两个揖,珍而重之地揣入怀中,转身对那玉像道:“神仙姊姊,你吩咐我朝午晚三次练功,段誉不敢有违。今后我对人加倍客气,别人不会来打我,我自然也不会去吸他内力。你这套‘凌波微步’我更要用心练熟,眼见不对,立刻溜之大吉,就吸不到他内力了。”至于“杀尽我逍遥派弟子”一节,却想也不敢去想。\n", "\n", "********ChatGLM:凌波微步是一种轻功身法,属于逍遥派独门轻功。它以《易经》中的六十四卦为基础,按照特定顺序踏着卦象方位行进,从第一步到最后一步正好行走一个大圈。凌波微步精妙异常,可以让人内力相助,自身内力颇为深厚之后再练。《天龙八部》第五回中有描述。\n", "\n" ] } ], "source": [ "\n", "res=vearch_db.similarity_search(query, 3)\n", "query = \"你知道凌波微步吗,你知道都有谁会凌波微步?\"\n", "for idx,tmp in enumerate(res): \n", " print(f\"{'#'*20}第{idx+1}段相关文档{'#'*20}\\n\\n{tmp.page_content}\\n\")\n", "\n", "# combine your local knowleadge and query \n", "context = \"\".join([tmp.page_content for tmp in res])\n", "new_query = f\"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\\n {context} \\n 回答用户这个问题:{query}\\n\\n\"\n", "response, history = model.chat(tokenizer, new_query, history=[])\n", "print(f\"********ChatGLM:{response}\\n\")\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Human: 你知道vearch是什么吗?\n", "ChatGLM:是的,我知道 Vearch。Vearch 是一种矩阵分解 technique,用于将矩阵分解为若干个不可约矩阵的乘积。它是由 Linus Torvalds 开发的,旨在提高 Linux 内核中矩阵操作的性能。\n", "\n", "Vearch 可以通过使用特殊的操作来对矩阵进行操作,从而避免了使用昂贵的矩阵操作库。它也被广泛用于其他操作系统中,如 FreeBSD 和 Solaris。\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Batches: 100%|██████████| 1/1 [00:00<00:00, 31.59it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "['04bc84fff5074b7b8990441e92e6df07', 'e221906153bb4e03bc7095dadea144de', '126034ba51934093920d8732860f340b']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "data": { "text/plain": [ "['04bc84fff5074b7b8990441e92e6df07',\n", " 'e221906153bb4e03bc7095dadea144de',\n", " '126034ba51934093920d8732860f340b']" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "query = \"你知道vearch是什么吗?\"\n", "response, history = model.chat(tokenizer, query, history=history)\n", "print(f\"Human: {query}\\nChatGLM:{response}\\n\")\n", "\n", "\n", "vearch_info = [\"Vearch 是一款存储大语言模型数据的向量数据库,用于存储和快速搜索模型embedding后的向量,可用于基于个人知识库的大模型应用\",\n", " \"Vearch 支持OpenAI, Llama, ChatGLM等模型,以及LangChain库\",\n", " \"vearch 是基于C语言,go语言开发的,并提供python接口,可以直接通过pip安装\"]\n", "vearch_source=[{'source': '/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt'},{'source': '/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt'},{'source': '/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt'}]\n", "vearch_db.add_texts(vearch_info,vearch_source)\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Batches: 100%|██████████| 1/1 [00:00<00:00, 25.57it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "####################第1段相关文档####################\n", "\n", "Vearch 是一款存储大语言模型数据的向量数据库,用于存储和快速搜索模型embedding后的向量,可用于基于个人知识库的大模型应用\n", "\n", "####################第2段相关文档####################\n", "\n", "Vearch 支持OpenAI, Llama, ChatGLM等模型,以及LangChain库\n", "\n", "####################第3段相关文档####################\n", "\n", "vearch 是基于C语言,go语言开发的,并提供python接口,可以直接通过pip安装\n", "\n", "***************ChatGLM:是的,Varch是一个向量数据库,旨在存储和快速搜索模型embedding后的向量。它支持OpenAI、Llama和ChatGLM等模型,并可以直接通过pip安装。Varch是一个基于C语言和Go语言开发的项目,并提供了Python接口。\n", "\n" ] } ], "source": [ "query3 = \"你知道vearch是什么吗?\"\n", "res1 = vearch_db.similarity_search(query3, 3)\n", "for idx,tmp in enumerate(res1): \n", " print(f\"{'#'*20}第{idx+1}段相关文档{'#'*20}\\n\\n{tmp.page_content}\\n\")\n", "\n", "context1 = \"\".join([tmp.page_content for tmp in res1])\n", "new_query1 = f\"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\\n {context1} \\n 回答用户这个问题:{query3}\\n\\n\"\n", "response, history = model.chat(tokenizer, new_query1, history=[])\n", "\n", "print(f\"***************ChatGLM:{response}\\n\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "delete docid True\n", "Human: 你知道vearch是什么吗?\n", "ChatGLM:Vearch是一种高分子化合物,也称为聚合物、高分子材料或合成材料。它是由重复单元组成的大型聚合物,通常由一些重复单元组成,这些单元在聚合过程中结合在一起形成一个连续的高分子链。\n", "\n", "Vearch具有许多独特的性质,例如高强度、高刚性、耐磨、耐腐蚀、耐高温等。它们通常用于制造各种应用,例如塑料制品、橡胶、纤维、建筑材料等。\n", "\n", "after delete docid to query again: {}\n", "get existed docid {'7aae36236f784105a0004d8ff3c7c3ad': Document(page_content='《天龙八部》第二回 玉壁月华明\\n\\n再展帛卷,长卷上源源皆是裸女画像,或立或卧,或现前胸,或见后背。人像的面容都是一般,但或喜或愁,或含情凝眸,或轻嗔薄怒,神情各异。一共有三十六幅图像,每幅像上均有颜色细线,注明穴道部位及练功法诀。\\n\\n帛卷尽处题着“凌波微步”四字,其后绘的是无数足印,注明“妇妹”、“无妄”等等字样,尽是《易经》中的方位。段誉前几日还正全心全意地钻研《易经》,一见到这些名称,登时精神大振,便似遇到故交良友一般。只见足印密密麻麻,不知有几千百个,自一个足印至另一个足印均有绿线贯串,线上绘有箭头,最后写着一行字道:“步法神妙,保身避敌,待积内力,再取敌命。”\\n\\n段誉心道:“神仙姊姊所遗的步法,必定精妙之极,遇到强敌时脱身逃走,那就很好,‘再取敌命’也就不必了。”\\n卷好帛卷,对之作了两个揖,珍而重之地揣入怀中,转身对那玉像道:“神仙姊姊,你吩咐我朝午晚三次练功,段誉不敢有违。今后我对人加倍客气,别人不会来打我,我自然也不会去吸他内力。你这套‘凌波微步’我更要用心练熟,眼见不对,立刻溜之大吉,就吸不到他内力了。”至于“杀尽我逍遥派弟子”一节,却想也不敢去想。', metadata={'source': '/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt'}), '7e495d4e5962497db2080e84d52e75ed': Document(page_content='《天龙八部》第五回 微步縠纹生\\n\\n卷轴中此外诸种经脉修习之法甚多,皆是取人内力的法门,段誉虽自语宽解,总觉习之有违本性,单是贪多务得,便非好事,当下暂不理会。\\n\\n卷到卷轴末端,又见到了“凌波微步”那四字,登时便想起《洛神赋》中那些句子来:“凌波微步,罗袜生尘……转眄流精,光润玉颜。含辞未吐,气若幽兰。华容婀娜,令我忘餐。”曹子建那些千古名句,在脑海中缓缓流过:“秾纤得衷,修短合度,肩若削成,腰如约素。延颈秀项,皓质呈露。芳泽无加,铅华弗御。云髻峨峨,修眉连娟。丹唇外朗,皓齿内鲜。明眸善睐,靥辅承权。瑰姿艳逸,仪静体闲。柔情绰态,媚于语言……”这些句子用在木婉清身上,“这话倒也有理”;但如用之于神仙姊姊,只怕更为适合。想到神仙姊姊的姿容体态,“皎若太阳升朝霞,灼若芙蓉出绿波”,但觉依她吩咐行事,实为人生至乐,心想:“我先来练这‘凌波微步’,此乃逃命之妙法,非害人之手段也,练之有百利而无一害。”', metadata={'source': '/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt'})}\n" ] } ], "source": [ "##delete and get function need to maintian docids \n", "##your docid\n", "res_d=vearch_db.delete(['04bc84fff5074b7b8990441e92e6df07', 'e221906153bb4e03bc7095dadea144de', '126034ba51934093920d8732860f340b'])\n", "print(\"delete docid\",res_d)\n", "query = \"你知道vearch是什么吗?\"\n", "response, history = model.chat(tokenizer, query, history=[])\n", "print(f\"Human: {query}\\nChatGLM:{response}\\n\")\n", "get_id_doc=vearch_db.get(['04bc84fff5074b7b8990441e92e6df07'])\n", "print(\"after delete docid to query again:\",get_id_doc)\n", "get_delet_doc=vearch_db.get(['7aae36236f784105a0004d8ff3c7c3ad', '7e495d4e5962497db2080e84d52e75ed'])\n", "print(\"get existed docid\",get_delet_doc)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.12 ('langchainGLM6B')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "1fd24e7ef183310e43cbf656d21568350c6a30580b6df7fe3b34654b3770f74d" } } }, "nbformat": 4, "nbformat_minor": 2 }