""" Pebblo Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. """ import inspect from typing import Any, Dict, List, Optional from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.pydantic_v1 import Extra, Field, validator from langchain_core.vectorstores import VectorStoreRetriever from langchain_community.chains.pebblo_retrieval.enforcement_filters import ( SUPPORTED_VECTORSTORES, set_enforcement_filters, ) from langchain_community.chains.pebblo_retrieval.models import ( AuthContext, SemanticContext, ) class PebbloRetrievalQA(Chain): """ Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. """ combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents or not.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStore to use for retrieval.""" auth_context_key: str = "auth_context" #: :meta private: """Authentication context for identity enforcement.""" semantic_context_key: str = "semantic_context" #: :meta private: """Semantic context for semantic enforcement.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key) semantic_context = inputs.get(self.semantic_context_key) accepts_run_manager = ( "run_manager" in inspect.signature(self._get_docs).parameters ) if accepts_run_manager: docs = self._get_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = self._get_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key) semantic_context = inputs.get(self.semantic_context_key) accepts_run_manager = ( "run_manager" in inspect.signature(self._aget_docs).parameters ) if accepts_run_manager: docs = await self._aget_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = await self._aget_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Input keys. :meta private: """ return [self.input_key, self.auth_context_key, self.semantic_context_key] @property def output_keys(self) -> List[str]: """Output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys += ["source_documents"] return _output_keys @property def _chain_type(self) -> str: """Return the chain type.""" return "pebblo_retrieval_qa" @classmethod def from_chain_type( cls, llm: BaseLanguageModel, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, **kwargs: Any, ) -> "PebbloRetrievalQA": """Load chain from chain type.""" from langchain.chains.question_answering import load_qa_chain _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) @validator("retriever", pre=True, always=True) def validate_vectorstore( cls, retriever: VectorStoreRetriever ) -> VectorStoreRetriever: """ Validate that the vectorstore of the retriever is supported vectorstores. """ if not any( isinstance(retriever.vectorstore, supported_class) for supported_class in SUPPORTED_VECTORSTORES ): raise ValueError( f"Vectorstore must be an instance of one of the supported " f"vectorstores: {SUPPORTED_VECTORSTORES}. " f"Got {type(retriever.vectorstore).__name__} instead." ) return retriever def _get_docs( self, question: str, auth_context: Optional[AuthContext], semantic_context: Optional[SemanticContext], *, run_manager: CallbackManagerForChainRun, ) -> List[Document]: """Get docs.""" set_enforcement_filters(self.retriever, auth_context, semantic_context) return self.retriever.get_relevant_documents( question, callbacks=run_manager.get_child() ) async def _aget_docs( self, question: str, auth_context: Optional[AuthContext], semantic_context: Optional[SemanticContext], *, run_manager: AsyncCallbackManagerForChainRun, ) -> List[Document]: """Get docs.""" set_enforcement_filters(self.retriever, auth_context, semantic_context) return await self.retriever.aget_relevant_documents( question, callbacks=run_manager.get_child() )