{ "cells": [ { "cell_type": "raw", "id": "71b5cfca", "metadata": {}, "source": [ "---\n", "sidebar_label: Llama API\n", "---" ] }, { "cell_type": "markdown", "id": "90a1faf2", "metadata": {}, "source": [ "# ChatLlamaAPI\n", "\n", "This notebook shows how to use LangChain with [LlamaAPI](https://llama-api.com/) - a hosted version of Llama2 that adds in support for function calling." ] }, { "cell_type": "markdown", "id": "f5b652cf", "metadata": {}, "source": [ "!pip install -U llamaapi" ] }, { "cell_type": "code", "execution_count": 2, "id": "bfd385fd", "metadata": {}, "outputs": [], "source": [ "from llamaapi import LlamaAPI\n", "\n", "# Replace 'Your_API_Token' with your actual API token\n", "llama = LlamaAPI(\"Your_API_Token\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "632eb3e5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.12) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n", " warnings.warn(\n" ] } ], "source": [ "from langchain_experimental.llms import ChatLlamaAPI" ] }, { "cell_type": "code", "execution_count": 5, "id": "6f850e82", "metadata": {}, "outputs": [], "source": [ "model = ChatLlamaAPI(client=llama)" ] }, { "cell_type": "code", "execution_count": 6, "id": "975c2bf4", "metadata": {}, "outputs": [], "source": [ "from langchain.chains import create_tagging_chain\n", "\n", "schema = {\n", " \"properties\": {\n", " \"sentiment\": {\n", " \"type\": \"string\",\n", " \"description\": \"the sentiment encountered in the passage\",\n", " },\n", " \"aggressiveness\": {\n", " \"type\": \"integer\",\n", " \"description\": \"a 0-10 score of how aggressive the passage is\",\n", " },\n", " \"language\": {\"type\": \"string\", \"description\": \"the language of the passage\"},\n", " }\n", "}\n", "\n", "chain = create_tagging_chain(schema, model)" ] }, { "cell_type": "code", "execution_count": 7, "id": "ef9638c3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'sentiment': 'aggressive', 'aggressiveness': 8, 'language': 'english'}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chain.run(\"give me your money\")" ] }, { "cell_type": "code", "execution_count": null, "id": "238b4f62", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }