{ "cells": [ { "cell_type": "markdown", "id": "13afcae7", "metadata": {}, "source": [ "# Self-querying with Weaviate" ] }, { "cell_type": "markdown", "id": "68e75fb9", "metadata": {}, "source": [ "## Creating a Weaviate vectorstore\n", "First we'll want to create a Weaviate VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n", "\n", "NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `weaviate-client` package." ] }, { "cell_type": "code", "execution_count": null, "id": "63a8af5b", "metadata": { "tags": [] }, "outputs": [], "source": [ "#!pip install lark weaviate-client" ] }, { "cell_type": "code", "execution_count": 10, "id": "cb4a5787", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.schema import Document\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.vectorstores import Weaviate\n", "import os\n", "\n", "embeddings = OpenAIEmbeddings()" ] }, { "cell_type": "code", "execution_count": 22, "id": "bcbe04d9", "metadata": { "tags": [] }, "outputs": [], "source": [ "docs = [\n", " Document(page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\", metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"}),\n", " Document(page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\", metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2}),\n", " Document(page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\", metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6}),\n", " Document(page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\", metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3}),\n", " Document(page_content=\"Toys come alive and have a blast doing so\", metadata={\"year\": 1995, \"genre\": \"animated\"}),\n", " Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"rating\": 9.9, \"director\": \"Andrei Tarkovsky\", \"genre\": \"science fiction\", \"rating\": 9.9})\n", "]\n", "vectorstore = Weaviate.from_documents(\n", " docs, embeddings, weaviate_url=\"http://127.0.0.1:8080\"\n", ")" ] }, { "cell_type": "markdown", "id": "5ecaab6d", "metadata": {}, "source": [ "## Creating our self-querying retriever\n", "Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents." ] }, { "cell_type": "code", "execution_count": 23, "id": "86e34dbf", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms import OpenAI\n", "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", "from langchain.chains.query_constructor.base import AttributeInfo\n", "\n", "metadata_field_info=[\n", " AttributeInfo(\n", " name=\"genre\",\n", " description=\"The genre of the movie\", \n", " type=\"string or list[string]\", \n", " ),\n", " AttributeInfo(\n", " name=\"year\",\n", " description=\"The year the movie was released\", \n", " type=\"integer\", \n", " ),\n", " AttributeInfo(\n", " name=\"director\",\n", " description=\"The name of the movie director\", \n", " type=\"string\", \n", " ),\n", " AttributeInfo(\n", " name=\"rating\",\n", " description=\"A 1-10 rating for the movie\",\n", " type=\"float\"\n", " ),\n", "]\n", "document_content_description = \"Brief summary of a movie\"\n", "llm = OpenAI(temperature=0)\n", "retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)" ] }, { "cell_type": "markdown", "id": "ea9df8d4", "metadata": {}, "source": [ "## Testing it out\n", "And now we can try actually using our retriever!" ] }, { "cell_type": "code", "execution_count": 24, "id": "38a126e9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='dinosaur' filter=None limit=None\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993}),\n", " Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'rating': None, 'year': 1995}),\n", " Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'genre': 'science fiction', 'rating': 9.9, 'year': 1979}),\n", " Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'genre': None, 'rating': 8.6, 'year': 2006})]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example only specifies a relevant query\n", "retriever.get_relevant_documents(\"What are some movies about dinosaurs\")" ] }, { "cell_type": "code", "execution_count": 26, "id": "b19d4da0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='women' filter=Comparison(comparator=, attribute='director', value='Greta Gerwig') limit=None\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'genre': None, 'rating': 8.3, 'year': 2019})]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example specifies a query and a filter\n", "retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")" ] }, { "cell_type": "markdown", "id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51", "metadata": {}, "source": [ "## Filter k\n", "\n", "We can also use the self query retriever to specify `k`: the number of documents to fetch.\n", "\n", "We can do this by passing `enable_limit=True` to the constructor." ] }, { "cell_type": "code", "execution_count": 27, "id": "bff36b88-b506-4877-9c63-e5a1a8d78e64", "metadata": { "tags": [] }, "outputs": [], "source": [ "retriever = SelfQueryRetriever.from_llm(\n", " llm, \n", " vectorstore, \n", " document_content_description, \n", " metadata_field_info, \n", " enable_limit=True,\n", " verbose=True\n", ")" ] }, { "cell_type": "code", "execution_count": 28, "id": "2758d229-4f97-499c-819f-888acaf8ee10", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "query='dinosaur' filter=None limit=2\n" ] }, { "data": { "text/plain": [ "[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': 'science fiction', 'rating': 7.7, 'year': 1993}),\n", " Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'rating': None, 'year': 1995})]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# This example only specifies a relevant query\n", "retriever.get_relevant_documents(\"what are two movies about dinosaurs\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }