{ "cells": [ { "cell_type": "raw", "id": "afaf8039", "metadata": {}, "source": [ "---\n", "sidebar_label: __ModuleName__\n", "---" ] }, { "cell_type": "markdown", "id": "9a3d6f34", "metadata": {}, "source": [ "# __ModuleName__Embeddings\n", "\n", "- [ ] TODO: Make sure API reference link is correct\n", "\n", "This will help you get started with __ModuleName__ embedding models using LangChain. For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/__package_name_short__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Provider | Package |\n", "|:--------:|:-------:|\n", "| [__ModuleName__](/docs/integrations/providers/__package_name_short__/) | [__package_name__](https://python.langchain.com/v0.2/api_reference/__module_name__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html) |\n", "\n", "## Setup\n", "\n", "- [ ] TODO: Update with relevant info.\n", "\n", "To access __ModuleName__ embedding models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n", "\n", "### Credentials\n", "\n", "- TODO: Update with relevant info.\n", "\n", "Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:" ] }, { "cell_type": "code", "execution_count": null, "id": "36521c2a", "metadata": {}, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", "if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n", " os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")" ] }, { "cell_type": "markdown", "id": "c84fb993", "metadata": {}, "source": [ "If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:" ] }, { "cell_type": "code", "execution_count": null, "id": "39a4953b", "metadata": {}, "outputs": [], "source": [ "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")" ] }, { "cell_type": "markdown", "id": "d9664366", "metadata": {}, "source": [ "### Installation\n", "\n", "The LangChain __ModuleName__ integration lives in the `__package_name__` package:" ] }, { "cell_type": "code", "execution_count": null, "id": "64853226", "metadata": {}, "outputs": [], "source": [ "%pip install -qU __package_name__" ] }, { "cell_type": "markdown", "id": "45dd1724", "metadata": {}, "source": [ "## Instantiation\n", "\n", "Now we can instantiate our model object and generate chat completions:\n", "\n", "- TODO: Update model instantiation with relevant params." ] }, { "cell_type": "code", "execution_count": null, "id": "9ea7a09b", "metadata": {}, "outputs": [], "source": [ "from __module_name__ import __ModuleName__Embeddings\n", "\n", "embeddings = __ModuleName__Embeddings(\n", " model=\"model-name\",\n", ")" ] }, { "cell_type": "markdown", "id": "77d271b6", "metadata": {}, "source": [ "## Indexing and Retrieval\n", "\n", "Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n", "\n", "Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`." ] }, { "cell_type": "code", "execution_count": null, "id": "d817716b", "metadata": {}, "outputs": [], "source": [ "# Create a vector store with a sample text\n", "from langchain_core.vectorstores import InMemoryVectorStore\n", "\n", "text = \"LangChain is the framework for building context-aware reasoning applications\"\n", "\n", "vectorstore = InMemoryVectorStore.from_texts(\n", " [text],\n", " embedding=embeddings,\n", ")\n", "\n", "# Use the vectorstore as a retriever\n", "retriever = vectorstore.as_retriever()\n", "\n", "# Retrieve the most similar text\n", "retrieved_documents = retriever.invoke(\"What is LangChain?\")\n", "\n", "# show the retrieved document's content\n", "retrieved_documents[0].page_content" ] }, { "cell_type": "markdown", "id": "e02b9855", "metadata": {}, "source": [ "## Direct Usage\n", "\n", "Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n", "\n", "You can directly call these methods to get embeddings for your own use cases.\n", "\n", "### Embed single texts\n", "\n", "You can embed single texts or documents with `embed_query`:" ] }, { "cell_type": "code", "execution_count": null, "id": "0d2befcd", "metadata": {}, "outputs": [], "source": [ "single_vector = embeddings.embed_query(text)\n", "print(str(single_vector)[:100]) # Show the first 100 characters of the vector" ] }, { "cell_type": "markdown", "id": "1b5a7d03", "metadata": {}, "source": [ "### Embed multiple texts\n", "\n", "You can embed multiple texts with `embed_documents`:" ] }, { "cell_type": "code", "execution_count": null, "id": "2f4d6e97", "metadata": {}, "outputs": [], "source": [ "text2 = (\n", " \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n", ")\n", "two_vectors = embeddings.embed_documents([text, text2])\n", "for vector in two_vectors:\n", " print(str(vector)[:100]) # Show the first 100 characters of the vector" ] }, { "cell_type": "markdown", "id": "98785c12", "metadata": {}, "source": [ "## API Reference\n", "\n", "For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html).\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.5" } }, "nbformat": 4, "nbformat_minor": 5 }