""" Pebblo Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. """ import datetime import inspect import logging from http import HTTPStatus from typing import Any, Dict, List, Optional import requests # type: ignore from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.pydantic_v1 import Extra, Field, validator from langchain_core.vectorstores import VectorStoreRetriever from langchain_community.chains.pebblo_retrieval.enforcement_filters import ( SUPPORTED_VECTORSTORES, set_enforcement_filters, ) from langchain_community.chains.pebblo_retrieval.models import ( App, AuthContext, Qa, SemanticContext, ) from langchain_community.chains.pebblo_retrieval.utilities import ( APP_DISCOVER_URL, CLASSIFIER_URL, PEBBLO_CLOUD_URL, PLUGIN_VERSION, PROMPT_URL, get_runtime, ) logger = logging.getLogger(__name__) class PebbloRetrievalQA(Chain): """ Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. """ combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_source_documents: bool = False """Return the source documents or not.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStore to use for retrieval.""" auth_context_key: str = "auth_context" #: :meta private: """Authentication context for identity enforcement.""" semantic_context_key: str = "semantic_context" #: :meta private: """Semantic context for semantic enforcement.""" app_name: str #: :meta private: """App name.""" owner: str #: :meta private: """Owner of app.""" description: str #: :meta private: """Description of app.""" api_key: Optional[str] = None #: :meta private: """Pebblo cloud API key for app.""" classifier_url: str = CLASSIFIER_URL #: :meta private: """Classifier endpoint.""" _discover_sent: bool = False #: :meta private: """Flag to check if discover payload has been sent.""" _prompt_sent: bool = False #: :meta private: """Flag to check if prompt payload has been sent.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ prompt_time = datetime.datetime.now().isoformat() _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key, {}) semantic_context = inputs.get(self.semantic_context_key, {}) accepts_run_manager = ( "run_manager" in inspect.signature(self._get_docs).parameters ) if accepts_run_manager: docs = self._get_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = self._get_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = self.combine_documents_chain.run( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) qa = { "name": self.app_name, "context": [ { "retrieved_from": doc.metadata.get("source"), "doc": doc.page_content, "vector_db": self.retriever.vectorstore.__class__.__name__, } for doc in docs if isinstance(doc, Document) ], "prompt": {"data": question}, "response": { "data": answer, }, "prompt_time": prompt_time, "user": auth_context.user_id if auth_context else "unknown", "user_identities": auth_context.user_auth if auth_context and hasattr(auth_context, "user_auth") else [], } qa_payload = Qa(**qa) self._send_prompt(qa_payload) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run get_relevant_text and llm on input query. If chain has 'return_source_documents' as 'True', returns the retrieved documents as well under the key 'source_documents'. Example: .. code-block:: python res = indexqa({'query': 'This is my query'}) answer, docs = res['result'], res['source_documents'] """ _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] auth_context = inputs.get(self.auth_context_key) semantic_context = inputs.get(self.semantic_context_key) accepts_run_manager = ( "run_manager" in inspect.signature(self._aget_docs).parameters ) if accepts_run_manager: docs = await self._aget_docs( question, auth_context, semantic_context, run_manager=_run_manager ) else: docs = await self._aget_docs(question, auth_context, semantic_context) # type: ignore[call-arg] answer = await self.combine_documents_chain.arun( input_documents=docs, question=question, callbacks=_run_manager.get_child() ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Input keys. :meta private: """ return [self.input_key, self.auth_context_key, self.semantic_context_key] @property def output_keys(self) -> List[str]: """Output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys += ["source_documents"] return _output_keys @property def _chain_type(self) -> str: """Return the chain type.""" return "pebblo_retrieval_qa" @classmethod def from_chain_type( cls, llm: BaseLanguageModel, app_name: str, description: str, owner: str, chain_type: str = "stuff", chain_type_kwargs: Optional[dict] = None, api_key: Optional[str] = None, classifier_url: str = CLASSIFIER_URL, **kwargs: Any, ) -> "PebbloRetrievalQA": """Load chain from chain type.""" from langchain.chains.question_answering import load_qa_chain _chain_type_kwargs = chain_type_kwargs or {} combine_documents_chain = load_qa_chain( llm, chain_type=chain_type, **_chain_type_kwargs ) # generate app app = PebbloRetrievalQA._get_app_details( app_name=app_name, description=description, owner=owner, llm=llm, **kwargs, ) PebbloRetrievalQA._send_discover( app, api_key=api_key, classifier_url=classifier_url ) return cls( combine_documents_chain=combine_documents_chain, app_name=app_name, owner=owner, description=description, api_key=api_key, classifier_url=classifier_url, **kwargs, ) @validator("retriever", pre=True, always=True) def validate_vectorstore( cls, retriever: VectorStoreRetriever ) -> VectorStoreRetriever: """ Validate that the vectorstore of the retriever is supported vectorstores. """ if not any( isinstance(retriever.vectorstore, supported_class) for supported_class in SUPPORTED_VECTORSTORES ): raise ValueError( f"Vectorstore must be an instance of one of the supported " f"vectorstores: {SUPPORTED_VECTORSTORES}. " f"Got {type(retriever.vectorstore).__name__} instead." ) return retriever def _get_docs( self, question: str, auth_context: Optional[AuthContext], semantic_context: Optional[SemanticContext], *, run_manager: CallbackManagerForChainRun, ) -> List[Document]: """Get docs.""" set_enforcement_filters(self.retriever, auth_context, semantic_context) return self.retriever.get_relevant_documents( question, callbacks=run_manager.get_child() ) async def _aget_docs( self, question: str, auth_context: Optional[AuthContext], semantic_context: Optional[SemanticContext], *, run_manager: AsyncCallbackManagerForChainRun, ) -> List[Document]: """Get docs.""" set_enforcement_filters(self.retriever, auth_context, semantic_context) return await self.retriever.aget_relevant_documents( question, callbacks=run_manager.get_child() ) @staticmethod def _get_app_details(app_name, owner, description, llm, **kwargs) -> App: # type: ignore """Fetch app details. Internal method. Returns: App: App details. """ framework, runtime = get_runtime() chains = PebbloRetrievalQA.get_chain_details(llm, **kwargs) app = App( name=app_name, owner=owner, description=description, runtime=runtime, framework=framework, chains=chains, plugin_version=PLUGIN_VERSION, ) return app @staticmethod def _send_discover(app, api_key, classifier_url) -> None: # type: ignore """Send app discovery payload to pebblo-server. Internal method.""" headers = { "Accept": "application/json", "Content-Type": "application/json", } payload = app.dict(exclude_unset=True) app_discover_url = f"{classifier_url}{APP_DISCOVER_URL}" try: pebblo_resp = requests.post( app_discover_url, headers=headers, json=payload, timeout=20 ) logger.debug("discover-payload: %s", payload) logger.debug( "send_discover[local]: request url %s, body %s len %s\ response status %s body %s", pebblo_resp.request.url, str(pebblo_resp.request.body), str(len(pebblo_resp.request.body if pebblo_resp.request.body else [])), str(pebblo_resp.status_code), pebblo_resp.json(), ) if pebblo_resp.status_code in [HTTPStatus.OK, HTTPStatus.BAD_GATEWAY]: PebbloRetrievalQA.set_discover_sent() else: logger.warning( f"Received unexpected HTTP response code: {pebblo_resp.status_code}" ) except requests.exceptions.RequestException: logger.warning("Unable to reach pebblo server.") except Exception as e: logger.warning("An Exception caught in _send_discover: local %s", e) if api_key: try: headers.update({"x-api-key": api_key}) pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{APP_DISCOVER_URL}" pebblo_cloud_response = requests.post( pebblo_cloud_url, headers=headers, json=payload, timeout=20 ) logger.debug( "send_discover[cloud]: request url %s, body %s len %s\ response status %s body %s", pebblo_cloud_response.request.url, str(pebblo_cloud_response.request.body), str( len( pebblo_cloud_response.request.body if pebblo_cloud_response.request.body else [] ) ), str(pebblo_cloud_response.status_code), pebblo_cloud_response.json(), ) except requests.exceptions.RequestException: logger.warning("Unable to reach Pebblo cloud server.") except Exception as e: logger.warning("An Exception caught in _send_discover: cloud %s", e) @classmethod def set_discover_sent(cls) -> None: cls._discover_sent = True @classmethod def set_prompt_sent(cls) -> None: cls._prompt_sent = True def _send_prompt(self, qa_payload: Qa) -> None: headers = { "Accept": "application/json", "Content-Type": "application/json", } app_discover_url = f"{self.classifier_url}{PROMPT_URL}" try: pebblo_resp = requests.post( app_discover_url, headers=headers, json=qa_payload.dict(), timeout=20 ) logger.debug("prompt-payload: %s", qa_payload) logger.debug( "send_prompt[local]: request url %s, body %s len %s\ response status %s body %s", pebblo_resp.request.url, str(pebblo_resp.request.body), str(len(pebblo_resp.request.body if pebblo_resp.request.body else [])), str(pebblo_resp.status_code), pebblo_resp.json(), ) if pebblo_resp.status_code in [HTTPStatus.OK, HTTPStatus.BAD_GATEWAY]: PebbloRetrievalQA.set_prompt_sent() else: logger.warning( f"Received unexpected HTTP response code: {pebblo_resp.status_code}" ) except requests.exceptions.RequestException: logger.warning("Unable to reach pebblo server.") except Exception as e: logger.warning("An Exception caught in _send_discover: local %s", e) if self.api_key: try: headers.update({"x-api-key": self.api_key}) pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{PROMPT_URL}" pebblo_cloud_response = requests.post( pebblo_cloud_url, headers=headers, json=qa_payload.dict(), timeout=20, ) logger.debug( "send_prompt[cloud]: request url %s, body %s len %s\ response status %s body %s", pebblo_cloud_response.request.url, str(pebblo_cloud_response.request.body), str( len( pebblo_cloud_response.request.body if pebblo_cloud_response.request.body else [] ) ), str(pebblo_cloud_response.status_code), pebblo_cloud_response.json(), ) except requests.exceptions.RequestException: logger.warning("Unable to reach Pebblo cloud server.") except Exception as e: logger.warning("An Exception caught in _send_prompt: cloud %s", e) @classmethod def get_chain_details(cls, llm, **kwargs): # type: ignore llm_dict = llm.__dict__ chain = [ { "name": cls.__name__, "model": { "name": llm_dict.get("model_name", llm_dict.get("model")), "vendor": llm.__class__.__name__, }, "vector_dbs": [ { "name": kwargs["retriever"].vectorstore.__class__.__name__, "embedding_model": str( kwargs["retriever"].vectorstore._embeddings.model ) if hasattr(kwargs["retriever"].vectorstore, "_embeddings") else ( str(kwargs["retriever"].vectorstore._embedding.model) if hasattr(kwargs["retriever"].vectorstore, "_embedding") else None ), } ], } ] return chain