{ "cells": [ { "cell_type": "raw", "id": "afaf8039", "metadata": {}, "source": [ "---\n", "sidebar_label: Anthropic\n", "---" ] }, { "cell_type": "markdown", "id": "e49f1e0d", "metadata": {}, "source": [ "# ChatAnthropic\n", "\n", "This notebook provides a quick overview for getting started with Anthropic [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatAnthropic features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html).\n", "\n", "Anthropic has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Anthropic docs](https://docs.anthropic.com/en/docs/models-overview).\n", "\n", "\n", ":::info AWS Bedrock and Google VertexAI\n", "\n", "Note that certain Anthropic models can also be accessed via AWS Bedrock and Google VertexAI. See the [ChatBedrock](/docs/integrations/chat/bedrock/) and [ChatVertexAI](/docs/integrations/chat/google_vertex_ai_palm/) integrations to use Anthropic models via these services.\n", "\n", ":::\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/anthropic) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", "| [ChatAnthropic](https://api.python.langchain.com/en/latest/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html) | [langchain-anthropic](https://api.python.langchain.com/en/latest/anthropic_api_reference.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-anthropic?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-anthropic?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", "| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", "| ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n", "\n", "## Setup\n", "\n", "To access Anthropic models you'll need to create an Anthropic account, get an API key, and install the `langchain-anthropic` integration package.\n", "\n", "### Credentials\n", "\n", "Head to https://console.anthropic.com/ to sign up for Anthropic and generate an API key. Once you've done this set the ANTHROPIC_API_KEY environment variable:" ] }, { "cell_type": "code", "execution_count": null, "id": "433e8d2b-9519-4b49-b2c4-7ab65b046c94", "metadata": {}, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", "os.environ[\"anthropic_API_KEY\"] = getpass.getpass(\"Enter your Anthropic API key: \")" ] }, { "cell_type": "markdown", "id": "72ee0c4b-9764-423a-9dbf-95129e185210", "metadata": {}, "source": [ "If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:" ] }, { "cell_type": "code", "execution_count": null, "id": "a15d341e-3e26-4ca3-830b-5aab30ed66de", "metadata": {}, "outputs": [], "source": [ "# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")\n", "# os.environ[\"LANGSMITH_TRACING\"] = \"true\"" ] }, { "cell_type": "markdown", "id": "0730d6a1-c893-4840-9817-5e5251676d5d", "metadata": {}, "source": [ "### Installation\n", "\n", "The LangChain Anthropic integration lives in the `langchain-anthropic` package:" ] }, { "cell_type": "code", "execution_count": null, "id": "652d6238-1f87-422a-b135-f5abbb8652fc", "metadata": {}, "outputs": [], "source": [ "%pip install -qU langchain-anthropic" ] }, { "cell_type": "markdown", "id": "a38cde65-254d-4219-a441-068766c0d4b5", "metadata": {}, "source": [ "## Instantiation\n", "\n", "Now we can instantiate our model object and generate chat completions:" ] }, { "cell_type": "code", "execution_count": 1, "id": "cb09c344-1836-4e0c-acf8-11d13ac1dbae", "metadata": {}, "outputs": [], "source": [ "from langchain_anthropic import ChatAnthropic\n", "\n", "llm = ChatAnthropic(\n", " model=\"claude-3-sonnet-20240229\",\n", " temperature=0,\n", " max_tokens=1024,\n", " timeout=None,\n", " max_retries=2,\n", " # other params...\n", ")" ] }, { "cell_type": "markdown", "id": "2b4f3e15", "metadata": {}, "source": [ "## Invocation\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "62e0dbc3", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AIMessage(content=\"Voici la traduction en français :\\n\\nJ'aime la programmation.\", response_metadata={'id': 'msg_013qztabaFADNnKsHR1rdrju', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 29, 'output_tokens': 21}}, id='run-a22ab30c-7e09-48f5-bc27-a08a9d8f7fa1-0', usage_metadata={'input_tokens': 29, 'output_tokens': 21, 'total_tokens': 50})" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "messages = [\n", " (\n", " \"system\",\n", " \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n", " ),\n", " (\"human\", \"I love programming.\"),\n", "]\n", "ai_msg = llm.invoke(messages)\n", "ai_msg" ] }, { "cell_type": "code", "execution_count": 3, "id": "d86145b3-bfef-46e8-b227-4dda5c9c2705", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Voici la traduction en français :\n", "\n", "J'aime la programmation.\n" ] } ], "source": [ "print(ai_msg.content)" ] }, { "cell_type": "markdown", "id": "18e2bfc0-7e78-4528-a73f-499ac150dca8", "metadata": {}, "source": [ "## Chaining\n", "\n", "We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:" ] }, { "cell_type": "code", "execution_count": 4, "id": "e197d1d7-a070-4c96-9f8a-a0e86d046e0b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='Ich liebe Programmieren.', response_metadata={'id': 'msg_01FWrA8w9HbjqYPTQ7VryUnp', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 23, 'output_tokens': 11}}, id='run-b749bf20-b46d-4d62-ac73-f59adab6dd7e-0', usage_metadata={'input_tokens': 23, 'output_tokens': 11, 'total_tokens': 34})" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_core.prompts import ChatPromptTemplate\n", "\n", "prompt = ChatPromptTemplate.from_messages(\n", " [\n", " (\n", " \"system\",\n", " \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", " ),\n", " (\"human\", \"{input}\"),\n", " ]\n", ")\n", "\n", "chain = prompt | llm\n", "chain.invoke(\n", " {\n", " \"input_language\": \"English\",\n", " \"output_language\": \"German\",\n", " \"input\": \"I love programming.\",\n", " }\n", ")" ] }, { "cell_type": "markdown", "id": "d1ee55bc-ffc8-4cfa-801c-993953a08cfd", "metadata": {}, "source": [ "## Content blocks\n", "\n", "One key difference to note between Anthropic models and most others is that the contents of a single Anthropic AI message can either be a single string or a **list of content blocks**. For example when an Anthropic model invokes a tool, the tool invocation is part of the message content (as well as being exposed in the standardized `AIMessage.tool_calls`):" ] }, { "cell_type": "code", "execution_count": 10, "id": "4a374a24-2534-4e6f-825b-30fab7bbe0cb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'text': \"Okay, let's use the GetWeather tool to check the current temperatures in Los Angeles and New York City.\",\n", " 'type': 'text'},\n", " {'id': 'toolu_01Tnp5tL7LJZaVyQXKEjbqcC',\n", " 'input': {'location': 'Los Angeles, CA'},\n", " 'name': 'GetWeather',\n", " 'type': 'tool_use'}]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain_core.pydantic_v1 import BaseModel, Field\n", "\n", "\n", "class GetWeather(BaseModel):\n", " \"\"\"Get the current weather in a given location\"\"\"\n", "\n", " location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n", "\n", "\n", "llm_with_tools = llm.bind_tools([GetWeather])\n", "ai_msg = llm_with_tools.invoke(\"Which city is hotter today: LA or NY?\")\n", "ai_msg.content" ] }, { "cell_type": "code", "execution_count": 11, "id": "6b4a1ead-952c-489f-a8d4-355d3fb55f3f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'name': 'GetWeather',\n", " 'args': {'location': 'Los Angeles, CA'},\n", " 'id': 'toolu_01Tnp5tL7LJZaVyQXKEjbqcC'}]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ai_msg.tool_calls" ] }, { "cell_type": "markdown", "id": "3a5bb5ca-c3ae-4a58-be67-2cd18574b9a3", "metadata": {}, "source": [ "## API reference\n", "\n", "For detailed documentation of all ChatAnthropic features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }