{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "SzvBjdID1V3m",
   "metadata": {
    "id": "SzvBjdID1V3m"
   },
   "source": [
    "# Multi-modal RAG with Google Cloud"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4tfidrmE1Zlo",
   "metadata": {
    "id": "4tfidrmE1Zlo"
   },
   "source": [
    "This tutorial demonstrates how to implement the Option 2 described [here](https://github.com/langchain-ai/langchain/blob/master/cookbook/Multi_modal_RAG.ipynb) with Generative API on Google Cloud."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "84fcd59f-2eaf-4a76-ad1a-96d6db70bf42",
   "metadata": {},
   "source": [
    "## Setup\n",
    "\n",
    "Install the required dependencies, and create an API key for your Google service."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6b1e10dd-25de-4c0a-9577-f36e72518f89",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -U --quiet langchain langchain_community openai chromadb langchain-experimental\n",
    "%pip install --quiet \"unstructured[all-docs]\" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "pSInKtCZ32mt",
   "metadata": {
    "id": "pSInKtCZ32mt"
   },
   "source": [
    "## Data loading"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "Iv2R8-lJ37dG",
   "metadata": {
    "id": "Iv2R8-lJ37dG"
   },
   "source": [
    "We use a zip file with a sub-set of the extracted images and pdf from [this](https://cloudedjudgement.substack.com/p/clouded-judgement-111023) blog post. If you want to follow the full flow, please, use the original [example](https://github.com/langchain-ai/langchain/blob/master/cookbook/Multi_modal_RAG.ipynb)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d999f3fe-c165-4772-b63e-ffe4dd5b03cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# First download\n",
    "import logging\n",
    "import zipfile\n",
    "\n",
    "import requests\n",
    "\n",
    "logging.basicConfig(level=logging.INFO)\n",
    "\n",
    "data_url = \"https://storage.googleapis.com/benchmarks-artifacts/langchain-docs-benchmarking/cj.zip\"\n",
    "result = requests.get(data_url)\n",
    "filename = \"cj.zip\"\n",
    "with open(filename, \"wb\") as file:\n",
    "    file.write(result.content)\n",
    "\n",
    "with zipfile.ZipFile(filename, \"r\") as zip_ref:\n",
    "    zip_ref.extractall()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "eGUfuevMUA6R",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.document_loaders import PyPDFLoader\n",
    "\n",
    "loader = PyPDFLoader(\"./cj/cj.pdf\")\n",
    "docs = loader.load()\n",
    "tables = []\n",
    "texts = [d.page_content for d in docs]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "Fst17fNHWYcq",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "21"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(texts)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "vjfcg_Vn3_1C",
   "metadata": {
    "id": "vjfcg_Vn3_1C"
   },
   "source": [
    "## Multi-vector retriever"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ynRqJn04BFG",
   "metadata": {
    "id": "1ynRqJn04BFG"
   },
   "source": [
    "Let's generate text and image summaries and save them to a ChromaDB vectorstore."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "kWDWfSDBMPl8",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:numexpr.utils:Note: NumExpr detected 12 cores but \"NUMEXPR_MAX_THREADS\" not set, so enforcing safe limit of 8.\n",
      "INFO:numexpr.utils:NumExpr defaulting to 8 threads.\n"
     ]
    }
   ],
   "source": [
    "from langchain.prompts import PromptTemplate\n",
    "from langchain_community.chat_models import ChatVertexAI\n",
    "from langchain_community.llms import VertexAI\n",
    "from langchain_core.messages import AIMessage\n",
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.runnables import RunnableLambda\n",
    "\n",
    "\n",
    "# Generate summaries of text elements\n",
    "def generate_text_summaries(texts, tables, summarize_texts=False):\n",
    "    \"\"\"\n",
    "    Summarize text elements\n",
    "    texts: List of str\n",
    "    tables: List of str\n",
    "    summarize_texts: Bool to summarize texts\n",
    "    \"\"\"\n",
    "\n",
    "    # Prompt\n",
    "    prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",
    "    These summaries will be embedded and used to retrieve the raw text or table elements. \\\n",
    "    Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} \"\"\"\n",
    "    prompt = PromptTemplate.from_template(prompt_text)\n",
    "    empty_response = RunnableLambda(\n",
    "        lambda x: AIMessage(content=\"Error processing document\")\n",
    "    )\n",
    "    # Text summary chain\n",
    "    model = VertexAI(\n",
    "        temperature=0, model_name=\"gemini-pro\", max_output_tokens=1024\n",
    "    ).with_fallbacks([empty_response])\n",
    "    summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
    "\n",
    "    # Initialize empty summaries\n",
    "    text_summaries = []\n",
    "    table_summaries = []\n",
    "\n",
    "    # Apply to text if texts are provided and summarization is requested\n",
    "    if texts and summarize_texts:\n",
    "        text_summaries = summarize_chain.batch(texts, {\"max_concurrency\": 1})\n",
    "    elif texts:\n",
    "        text_summaries = texts\n",
    "\n",
    "    # Apply to tables if tables are provided\n",
    "    if tables:\n",
    "        table_summaries = summarize_chain.batch(tables, {\"max_concurrency\": 1})\n",
    "\n",
    "    return text_summaries, table_summaries\n",
    "\n",
    "\n",
    "# Get text, table summaries\n",
    "text_summaries, table_summaries = generate_text_summaries(\n",
    "    texts, tables, summarize_texts=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "F0NnyUl48yYb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "21"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(text_summaries)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "PeK9bzXv3olF",
   "metadata": {},
   "outputs": [],
   "source": [
    "import base64\n",
    "import os\n",
    "\n",
    "from langchain_core.messages import HumanMessage\n",
    "\n",
    "\n",
    "def encode_image(image_path):\n",
    "    \"\"\"Getting the base64 string\"\"\"\n",
    "    with open(image_path, \"rb\") as image_file:\n",
    "        return base64.b64encode(image_file.read()).decode(\"utf-8\")\n",
    "\n",
    "\n",
    "def image_summarize(img_base64, prompt):\n",
    "    \"\"\"Make image summary\"\"\"\n",
    "    model = ChatVertexAI(model_name=\"gemini-pro-vision\", max_output_tokens=1024)\n",
    "\n",
    "    msg = model(\n",
    "        [\n",
    "            HumanMessage(\n",
    "                content=[\n",
    "                    {\"type\": \"text\", \"text\": prompt},\n",
    "                    {\n",
    "                        \"type\": \"image_url\",\n",
    "                        \"image_url\": {\"url\": f\"data:image/jpeg;base64,{img_base64}\"},\n",
    "                    },\n",
    "                ]\n",
    "            )\n",
    "        ]\n",
    "    )\n",
    "    return msg.content\n",
    "\n",
    "\n",
    "def generate_img_summaries(path):\n",
    "    \"\"\"\n",
    "    Generate summaries and base64 encoded strings for images\n",
    "    path: Path to list of .jpg files extracted by Unstructured\n",
    "    \"\"\"\n",
    "\n",
    "    # Store base64 encoded images\n",
    "    img_base64_list = []\n",
    "\n",
    "    # Store image summaries\n",
    "    image_summaries = []\n",
    "\n",
    "    # Prompt\n",
    "    prompt = \"\"\"You are an assistant tasked with summarizing images for retrieval. \\\n",
    "    These summaries will be embedded and used to retrieve the raw image. \\\n",
    "    Give a concise summary of the image that is well optimized for retrieval.\"\"\"\n",
    "\n",
    "    # Apply to images\n",
    "    for img_file in sorted(os.listdir(path)):\n",
    "        if img_file.endswith(\".jpg\"):\n",
    "            img_path = os.path.join(path, img_file)\n",
    "            base64_image = encode_image(img_path)\n",
    "            img_base64_list.append(base64_image)\n",
    "            image_summaries.append(image_summarize(base64_image, prompt))\n",
    "\n",
    "    return img_base64_list, image_summaries\n",
    "\n",
    "\n",
    "# Image summaries\n",
    "img_base64_list, image_summaries = generate_img_summaries(\"./cj\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "6WDYpDFzjocl",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "5"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(image_summaries)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "cWyWfZ-XB6cS",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:chromadb.telemetry.product.posthog:Anonymized telemetry enabled. See                     https://docs.trychroma.com/telemetry for more information.\n"
     ]
    }
   ],
   "source": [
    "import uuid\n",
    "\n",
    "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
    "from langchain.storage import InMemoryStore\n",
    "from langchain_community.embeddings import VertexAIEmbeddings\n",
    "from langchain_community.vectorstores import Chroma\n",
    "from langchain_core.documents import Document\n",
    "\n",
    "\n",
    "def create_multi_vector_retriever(\n",
    "    vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images\n",
    "):\n",
    "    \"\"\"\n",
    "    Create retriever that indexes summaries, but returns raw images or texts\n",
    "    \"\"\"\n",
    "\n",
    "    # Initialize the storage layer\n",
    "    store = InMemoryStore()\n",
    "    id_key = \"doc_id\"\n",
    "\n",
    "    # Create the multi-vector retriever\n",
    "    retriever = MultiVectorRetriever(\n",
    "        vectorstore=vectorstore,\n",
    "        docstore=store,\n",
    "        id_key=id_key,\n",
    "    )\n",
    "\n",
    "    # Helper function to add documents to the vectorstore and docstore\n",
    "    def add_documents(retriever, doc_summaries, doc_contents):\n",
    "        doc_ids = [str(uuid.uuid4()) for _ in doc_contents]\n",
    "        summary_docs = [\n",
    "            Document(page_content=s, metadata={id_key: doc_ids[i]})\n",
    "            for i, s in enumerate(doc_summaries)\n",
    "        ]\n",
    "        retriever.vectorstore.add_documents(summary_docs)\n",
    "        retriever.docstore.mset(list(zip(doc_ids, doc_contents)))\n",
    "\n",
    "    # Add texts, tables, and images\n",
    "    # Check that text_summaries is not empty before adding\n",
    "    if text_summaries:\n",
    "        add_documents(retriever, text_summaries, texts)\n",
    "    # Check that table_summaries is not empty before adding\n",
    "    if table_summaries:\n",
    "        add_documents(retriever, table_summaries, tables)\n",
    "    # Check that image_summaries is not empty before adding\n",
    "    if image_summaries:\n",
    "        add_documents(retriever, image_summaries, images)\n",
    "\n",
    "    return retriever\n",
    "\n",
    "\n",
    "# The vectorstore to use to index the summaries\n",
    "vectorstore = Chroma(\n",
    "    collection_name=\"mm_rag_cj_blog\",\n",
    "    embedding_function=VertexAIEmbeddings(model_name=\"textembedding-gecko@latest\"),\n",
    ")\n",
    "\n",
    "# Create retriever\n",
    "retriever_multi_vector_img = create_multi_vector_retriever(\n",
    "    vectorstore,\n",
    "    text_summaries,\n",
    "    texts,\n",
    "    table_summaries,\n",
    "    tables,\n",
    "    image_summaries,\n",
    "    img_base64_list,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "NGDkkMFfCg4j",
   "metadata": {
    "id": "NGDkkMFfCg4j"
   },
   "source": [
    "## Building a RAG"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8TzOcHVsCmBc",
   "metadata": {
    "id": "8TzOcHVsCmBc"
   },
   "source": [
    "Let's build a retriever:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "GlwCErBaCKQW",
   "metadata": {},
   "outputs": [],
   "source": [
    "import io\n",
    "import re\n",
    "\n",
    "from IPython.display import HTML, display\n",
    "from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
    "from PIL import Image\n",
    "\n",
    "\n",
    "def plt_img_base64(img_base64):\n",
    "    \"\"\"Disply base64 encoded string as image\"\"\"\n",
    "    # Create an HTML img tag with the base64 string as the source\n",
    "    image_html = f' '\n",
    "    # Display the image by rendering the HTML\n",
    "    display(HTML(image_html))\n",
    "\n",
    "\n",
    "def looks_like_base64(sb):\n",
    "    \"\"\"Check if the string looks like base64\"\"\"\n",
    "    return re.match(\"^[A-Za-z0-9+/]+[=]{0,2}$\", sb) is not None\n",
    "\n",
    "\n",
    "def is_image_data(b64data):\n",
    "    \"\"\"\n",
    "    Check if the base64 data is an image by looking at the start of the data\n",
    "    \"\"\"\n",
    "    image_signatures = {\n",
    "        b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
    "        b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
    "        b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
    "        b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
    "    }\n",
    "    try:\n",
    "        header = base64.b64decode(b64data)[:8]  # Decode and get the first 8 bytes\n",
    "        for sig, format in image_signatures.items():\n",
    "            if header.startswith(sig):\n",
    "                return True\n",
    "        return False\n",
    "    except Exception:\n",
    "        return False\n",
    "\n",
    "\n",
    "def resize_base64_image(base64_string, size=(128, 128)):\n",
    "    \"\"\"\n",
    "    Resize an image encoded as a Base64 string\n",
    "    \"\"\"\n",
    "    # Decode the Base64 string\n",
    "    img_data = base64.b64decode(base64_string)\n",
    "    img = Image.open(io.BytesIO(img_data))\n",
    "\n",
    "    # Resize the image\n",
    "    resized_img = img.resize(size, Image.LANCZOS)\n",
    "\n",
    "    # Save the resized image to a bytes buffer\n",
    "    buffered = io.BytesIO()\n",
    "    resized_img.save(buffered, format=img.format)\n",
    "\n",
    "    # Encode the resized image to Base64\n",
    "    return base64.b64encode(buffered.getvalue()).decode(\"utf-8\")\n",
    "\n",
    "\n",
    "def split_image_text_types(docs):\n",
    "    \"\"\"\n",
    "    Split base64-encoded images and texts\n",
    "    \"\"\"\n",
    "    b64_images = []\n",
    "    texts = []\n",
    "    for doc in docs:\n",
    "        # Check if the document is of type Document and extract page_content if so\n",
    "        if isinstance(doc, Document):\n",
    "            doc = doc.page_content\n",
    "        if looks_like_base64(doc) and is_image_data(doc):\n",
    "            doc = resize_base64_image(doc, size=(1300, 600))\n",
    "            b64_images.append(doc)\n",
    "        else:\n",
    "            texts.append(doc)\n",
    "    if len(b64_images) > 0:\n",
    "        return {\"images\": b64_images[:1], \"texts\": []}\n",
    "    return {\"images\": b64_images, \"texts\": texts}\n",
    "\n",
    "\n",
    "def img_prompt_func(data_dict):\n",
    "    \"\"\"\n",
    "    Join the context into a single string\n",
    "    \"\"\"\n",
    "    formatted_texts = \"\\n\".join(data_dict[\"context\"][\"texts\"])\n",
    "    messages = []\n",
    "\n",
    "    # Adding the text for analysis\n",
    "    text_message = {\n",
    "        \"type\": \"text\",\n",
    "        \"text\": (\n",
    "            \"You are financial analyst tasking with providing investment advice.\\n\"\n",
    "            \"You will be given a mixed of text, tables, and image(s) usually of charts or graphs.\\n\"\n",
    "            \"Use this information to provide investment advice related to the user question. \\n\"\n",
    "            f\"User-provided question: {data_dict['question']}\\n\\n\"\n",
    "            \"Text and / or tables:\\n\"\n",
    "            f\"{formatted_texts}\"\n",
    "        ),\n",
    "    }\n",
    "    messages.append(text_message)\n",
    "    # Adding image(s) to the messages if present\n",
    "    if data_dict[\"context\"][\"images\"]:\n",
    "        for image in data_dict[\"context\"][\"images\"]:\n",
    "            image_message = {\n",
    "                \"type\": \"image_url\",\n",
    "                \"image_url\": {\"url\": f\"data:image/jpeg;base64,{image}\"},\n",
    "            }\n",
    "            messages.append(image_message)\n",
    "    return [HumanMessage(content=messages)]\n",
    "\n",
    "\n",
    "def multi_modal_rag_chain(retriever):\n",
    "    \"\"\"\n",
    "    Multi-modal RAG chain\n",
    "    \"\"\"\n",
    "\n",
    "    # Multi-modal LLM\n",
    "    model = ChatVertexAI(\n",
    "        temperature=0, model_name=\"gemini-pro-vision\", max_output_tokens=1024\n",
    "    )\n",
    "\n",
    "    # RAG pipeline\n",
    "    chain = (\n",
    "        {\n",
    "            \"context\": retriever | RunnableLambda(split_image_text_types),\n",
    "            \"question\": RunnablePassthrough(),\n",
    "        }\n",
    "        | RunnableLambda(img_prompt_func)\n",
    "        | model\n",
    "        | StrOutputParser()\n",
    "    )\n",
    "\n",
    "    return chain\n",
    "\n",
    "\n",
    "# Create RAG chain\n",
    "chain_multimodal_rag = multi_modal_rag_chain(retriever_multi_vector_img)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "BS4hNKqCCp8u",
   "metadata": {
    "id": "BS4hNKqCCp8u"
   },
   "source": [
    "Let's check that we get images as documents:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "Q7GrwFC_FGwr",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
    "docs = retriever_multi_vector_img.get_relevant_documents(query, limit=1)\n",
    "\n",
    "# We get 2 docs\n",
    "len(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "unnxB5M_FLCD",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "
'\n",
    "    # Display the image by rendering the HTML\n",
    "    display(HTML(image_html))\n",
    "\n",
    "\n",
    "def looks_like_base64(sb):\n",
    "    \"\"\"Check if the string looks like base64\"\"\"\n",
    "    return re.match(\"^[A-Za-z0-9+/]+[=]{0,2}$\", sb) is not None\n",
    "\n",
    "\n",
    "def is_image_data(b64data):\n",
    "    \"\"\"\n",
    "    Check if the base64 data is an image by looking at the start of the data\n",
    "    \"\"\"\n",
    "    image_signatures = {\n",
    "        b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
    "        b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
    "        b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
    "        b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
    "    }\n",
    "    try:\n",
    "        header = base64.b64decode(b64data)[:8]  # Decode and get the first 8 bytes\n",
    "        for sig, format in image_signatures.items():\n",
    "            if header.startswith(sig):\n",
    "                return True\n",
    "        return False\n",
    "    except Exception:\n",
    "        return False\n",
    "\n",
    "\n",
    "def resize_base64_image(base64_string, size=(128, 128)):\n",
    "    \"\"\"\n",
    "    Resize an image encoded as a Base64 string\n",
    "    \"\"\"\n",
    "    # Decode the Base64 string\n",
    "    img_data = base64.b64decode(base64_string)\n",
    "    img = Image.open(io.BytesIO(img_data))\n",
    "\n",
    "    # Resize the image\n",
    "    resized_img = img.resize(size, Image.LANCZOS)\n",
    "\n",
    "    # Save the resized image to a bytes buffer\n",
    "    buffered = io.BytesIO()\n",
    "    resized_img.save(buffered, format=img.format)\n",
    "\n",
    "    # Encode the resized image to Base64\n",
    "    return base64.b64encode(buffered.getvalue()).decode(\"utf-8\")\n",
    "\n",
    "\n",
    "def split_image_text_types(docs):\n",
    "    \"\"\"\n",
    "    Split base64-encoded images and texts\n",
    "    \"\"\"\n",
    "    b64_images = []\n",
    "    texts = []\n",
    "    for doc in docs:\n",
    "        # Check if the document is of type Document and extract page_content if so\n",
    "        if isinstance(doc, Document):\n",
    "            doc = doc.page_content\n",
    "        if looks_like_base64(doc) and is_image_data(doc):\n",
    "            doc = resize_base64_image(doc, size=(1300, 600))\n",
    "            b64_images.append(doc)\n",
    "        else:\n",
    "            texts.append(doc)\n",
    "    if len(b64_images) > 0:\n",
    "        return {\"images\": b64_images[:1], \"texts\": []}\n",
    "    return {\"images\": b64_images, \"texts\": texts}\n",
    "\n",
    "\n",
    "def img_prompt_func(data_dict):\n",
    "    \"\"\"\n",
    "    Join the context into a single string\n",
    "    \"\"\"\n",
    "    formatted_texts = \"\\n\".join(data_dict[\"context\"][\"texts\"])\n",
    "    messages = []\n",
    "\n",
    "    # Adding the text for analysis\n",
    "    text_message = {\n",
    "        \"type\": \"text\",\n",
    "        \"text\": (\n",
    "            \"You are financial analyst tasking with providing investment advice.\\n\"\n",
    "            \"You will be given a mixed of text, tables, and image(s) usually of charts or graphs.\\n\"\n",
    "            \"Use this information to provide investment advice related to the user question. \\n\"\n",
    "            f\"User-provided question: {data_dict['question']}\\n\\n\"\n",
    "            \"Text and / or tables:\\n\"\n",
    "            f\"{formatted_texts}\"\n",
    "        ),\n",
    "    }\n",
    "    messages.append(text_message)\n",
    "    # Adding image(s) to the messages if present\n",
    "    if data_dict[\"context\"][\"images\"]:\n",
    "        for image in data_dict[\"context\"][\"images\"]:\n",
    "            image_message = {\n",
    "                \"type\": \"image_url\",\n",
    "                \"image_url\": {\"url\": f\"data:image/jpeg;base64,{image}\"},\n",
    "            }\n",
    "            messages.append(image_message)\n",
    "    return [HumanMessage(content=messages)]\n",
    "\n",
    "\n",
    "def multi_modal_rag_chain(retriever):\n",
    "    \"\"\"\n",
    "    Multi-modal RAG chain\n",
    "    \"\"\"\n",
    "\n",
    "    # Multi-modal LLM\n",
    "    model = ChatVertexAI(\n",
    "        temperature=0, model_name=\"gemini-pro-vision\", max_output_tokens=1024\n",
    "    )\n",
    "\n",
    "    # RAG pipeline\n",
    "    chain = (\n",
    "        {\n",
    "            \"context\": retriever | RunnableLambda(split_image_text_types),\n",
    "            \"question\": RunnablePassthrough(),\n",
    "        }\n",
    "        | RunnableLambda(img_prompt_func)\n",
    "        | model\n",
    "        | StrOutputParser()\n",
    "    )\n",
    "\n",
    "    return chain\n",
    "\n",
    "\n",
    "# Create RAG chain\n",
    "chain_multimodal_rag = multi_modal_rag_chain(retriever_multi_vector_img)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "BS4hNKqCCp8u",
   "metadata": {
    "id": "BS4hNKqCCp8u"
   },
   "source": [
    "Let's check that we get images as documents:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "Q7GrwFC_FGwr",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
    "docs = retriever_multi_vector_img.get_relevant_documents(query, limit=1)\n",
    "\n",
    "# We get 2 docs\n",
    "len(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "unnxB5M_FLCD",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       " "
      ],
      "text/plain": [
       ""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt_img_base64(docs[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "YUkGZXqsCtF6",
   "metadata": {
    "id": "YUkGZXqsCtF6"
   },
   "source": [
    "And let's run our RAG on the same query:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "LsPTehdK-T-_",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "' | Company | EV / NTM Rev | NTM Rev Growth |\\n|---|---|---|\\n| MongoDB | 14.6x | 17% |\\n| Cloudflare | 13.4x | 28% |\\n| Datadog | 13.1x | 19% |'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain_multimodal_rag.invoke(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "XpLQB6dEfQX-",
   "metadata": {
    "id": "XpLQB6dEfQX-"
   },
   "source": [
    "As we can see, the model was able to figure out the the right values that are relevant to answer the question."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}
"
      ],
      "text/plain": [
       ""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt_img_base64(docs[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "YUkGZXqsCtF6",
   "metadata": {
    "id": "YUkGZXqsCtF6"
   },
   "source": [
    "And let's run our RAG on the same query:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "LsPTehdK-T-_",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "' | Company | EV / NTM Rev | NTM Rev Growth |\\n|---|---|---|\\n| MongoDB | 14.6x | 17% |\\n| Cloudflare | 13.4x | 28% |\\n| Datadog | 13.1x | 19% |'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain_multimodal_rag.invoke(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "XpLQB6dEfQX-",
   "metadata": {
    "id": "XpLQB6dEfQX-"
   },
   "source": [
    "As we can see, the model was able to figure out the the right values that are relevant to answer the question."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}