{ "cells": [ { "cell_type": "markdown", "id": "25bce5eb-8599-40fe-947e-4932cfae8184", "metadata": {}, "source": [ "# Vald\n", "\n", "> [Vald](https://github.com/vdaas/vald) is a highly scalable distributed fast approximate nearest neighbor (ANN) dense vector search engine.\n", "\n", "This notebook shows how to use functionality related to the `Vald` database.\n", "\n", "To run this notebook you need a running Vald cluster.\n", "Check [Get Started](https://github.com/vdaas/vald#get-started) for more information.\n", "\n", "See the [installation instructions](https://github.com/vdaas/vald-client-python#install)." ] }, { "cell_type": "code", "execution_count": null, "id": "f45f46f2-7229-4859-9797-30bbead1b8e0", "metadata": {}, "outputs": [], "source": [ "!pip install vald-client-python" ] }, { "cell_type": "markdown", "id": "2f65caa9-8383-409a-bccb-6e91fc8d5e8f", "metadata": {}, "source": [ "## Basic Example" ] }, { "cell_type": "code", "execution_count": null, "id": "eab0b1e4-9793-4be7-a2ba-e4455c21ea22", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", "from langchain.embeddings import HuggingFaceEmbeddings\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.vectorstores import Vald\n", "\n", "raw_documents = TextLoader('state_of_the_union.txt').load()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "documents = text_splitter.split_documents(raw_documents)\n", "embeddings = HuggingFaceEmbeddings()\n", "db = Vald.from_documents(documents, embeddings, host=\"localhost\", port=8080)" ] }, { "cell_type": "code", "execution_count": null, "id": "b0a6797c-2bb0-45db-a636-5d2437f7a4c0", "metadata": {}, "outputs": [], "source": [ "query = \"What did the president say about Ketanji Brown Jackson\"\n", "docs = db.similarity_search(query)\n", "docs[0].page_content" ] }, { "cell_type": "markdown", "id": "c4c4e06d-6def-44ce-ac9a-4c01673c29a2", "metadata": {}, "source": [ "### Similarity search by vector" ] }, { "cell_type": "code", "execution_count": null, "id": "1eb72610-d451-4158-880c-9f0d45fa5909", "metadata": {}, "outputs": [], "source": [ "embedding_vector = embeddings.embed_query(query)\n", "docs = db.similarity_search_by_vector(embedding_vector)\n", "docs[0].page_content" ] }, { "cell_type": "markdown", "id": "d33588d4-67c2-4bd3-b251-76ae783cbafb", "metadata": {}, "source": [ "### Similarity search with score" ] }, { "cell_type": "code", "execution_count": null, "id": "1a41e382-0336-4e6d-b2ef-44cc77db2696", "metadata": {}, "outputs": [], "source": [ "docs_and_scores = db.similarity_search_with_score(query)\n", "docs_and_scores[0]" ] }, { "cell_type": "markdown", "id": "57f930f2-41a0-4795-ad9e-44a33c8f88ec", "metadata": {}, "source": [ "## Maximal Marginal Relevance Search (MMR)" ] }, { "cell_type": "markdown", "id": "4790e437-3207-45cb-b121-d857ab5aabd8", "metadata": {}, "source": [ "In addition to using similarity search in the retriever object, you can also use `mmr` as retriever." ] }, { "cell_type": "code", "execution_count": null, "id": "495754b1-5cdb-4af6-9733-f68700bb7232", "metadata": {}, "outputs": [], "source": [ "retriever = db.as_retriever(search_type=\"mmr\")\n", "retriever.get_relevant_documents(query)" ] }, { "cell_type": "markdown", "id": "e213d957-e439-4bd6-90f2-8909323f5f09", "metadata": {}, "source": [ "Or use `max_marginal_relevance_search` directly:" ] }, { "cell_type": "code", "execution_count": null, "id": "99d928d0-3b79-4588-925e-32230e12af47", "metadata": {}, "outputs": [], "source": [ "db.max_marginal_relevance_search(query, k=2, fetch_k=10)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 5 }