{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "source": [ "!pip -q install elasticsearch langchain" ], "metadata": { "id": "6dJxqebov4eU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import elasticsearch\n", "from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings" ], "metadata": { "id": "RV7C3DUmv4aq" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Define the model ID\n", "model_id = 'your_model_id'" ], "metadata": { "id": "MrT3jplJvp09" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Instantiate ElasticsearchEmbeddings using credentials\n", "embeddings = ElasticsearchEmbeddings.from_credentials(\n", " model_id,\n", " es_cloud_id='your_cloud_id', \n", " es_user='your_user', \n", " es_password='your_password'\n", ")\n" ], "metadata": { "id": "svtdnC-dvpxR" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Create embeddings for multiple documents\n", "documents = [\n", " 'This is an example document.', \n", " 'Another example document to generate embeddings for.'\n", "]\n", "document_embeddings = embeddings.embed_documents(documents)\n" ], "metadata": { "id": "7DXZAK7Kvpth" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Print document embeddings\n", "for i, embedding in enumerate(document_embeddings):\n", " print(f\"Embedding for document {i+1}: {embedding}\")\n" ], "metadata": { "id": "K8ra75W_vpqy" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Create an embedding for a single query\n", "query = 'This is a single query.'\n", "query_embedding = embeddings.embed_query(query)\n" ], "metadata": { "id": "V4Q5kQo9vpna" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Print query embedding\n", "print(f\"Embedding for query: {query_embedding}\")\n" ], "metadata": { "id": "O0oQDzGKvpkz" }, "execution_count": null, "outputs": [] } ] }