{ "cells": [ { "cell_type": "markdown", "id": "ab66dd43", "metadata": {}, "source": [ "# ElasticSearch BM25\n", "\n", "This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25.\n", "\n", "For more information on the details of BM25 see [this blog post](https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables)." ] }, { "cell_type": "code", "execution_count": 2, "id": "393ac030", "metadata": {}, "outputs": [], "source": [ "from langchain.retrievers import ElasticSearchBM25Retriever" ] }, { "cell_type": "markdown", "id": "aaf80e7f", "metadata": {}, "source": [ "## Create New Retriever" ] }, { "cell_type": "code", "execution_count": 12, "id": "bcb3c8c2", "metadata": {}, "outputs": [], "source": [ "elasticsearch_url=\"http://localhost:9200\"\n", "retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-3\")" ] }, { "cell_type": "code", "execution_count": 13, "id": "b605284d", "metadata": {}, "outputs": [], "source": [ "# Alternatively, you can load an existing index\n", "# import elasticsearch\n", "# elasticsearch_url=\"http://localhost:9200\"\n", "# retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), \"langchain-index\")" ] }, { "cell_type": "markdown", "id": "1c518c42", "metadata": {}, "source": [ "## Add texts (if necessary)\n", "\n", "We can optionally add texts to the retriever (if they aren't already in there)" ] }, { "cell_type": "code", "execution_count": 14, "id": "98b1c017", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['386c76c9-4355-4c12-aaeb-7b80054caf93',\n", " 'fffd279c-a0c9-4158-a904-6e242c517c99',\n", " '7f5528a3-18d0-43b0-894d-f6770a002219',\n", " 'e2ef5e32-d5bd-44e2-b045-cfc5a8e0a0a1',\n", " 'cce8ba48-e473-4235-bca2-2c8d65e73ccf']" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "retriever.add_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])" ] }, { "cell_type": "markdown", "id": "08437fa2", "metadata": {}, "source": [ "## Use Retriever\n", "\n", "We can now use the retriever!" ] }, { "cell_type": "code", "execution_count": 15, "id": "c0455218", "metadata": {}, "outputs": [], "source": [ "result = retriever.get_relevant_documents(\"foo\")" ] }, { "cell_type": "code", "execution_count": 16, "id": "7dfa5c29", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Document(page_content='foo', metadata={}),\n", " Document(page_content='foo bar', metadata={})]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result" ] }, { "cell_type": "code", "execution_count": null, "id": "74bd9256", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }