import os from abc import abstractmethod from typing import Tuple, Type, Union from unittest import mock import pytest from langchain_core.tools import BaseTool from pydantic import SecretStr from langchain_tests.base import BaseStandardTests class ToolsTests(BaseStandardTests): """ :private: Base class for testing tools. This won't show in the documentation, but the docstrings will be inherited by subclasses. """ @property @abstractmethod def tool_constructor(self) -> Union[Type[BaseTool], BaseTool]: """ Returns a class or instance of a tool to be tested. """ ... @property def tool_constructor_params(self) -> dict: """ Returns a dictionary of parameters to pass to the tool constructor. """ return {} @property def tool_invoke_params_example(self) -> dict: """ Returns a dictionary representing the "args" of an example tool call. This should NOT be a ToolCall dict - it should not have {"name", "id", "args"} keys. """ return {} @pytest.fixture def tool(self) -> BaseTool: """ :private: """ if isinstance(self.tool_constructor, BaseTool): if self.tool_constructor_params != {}: msg = ( "If tool_constructor is an instance of BaseTool, " "tool_constructor_params must be empty" ) raise ValueError(msg) return self.tool_constructor return self.tool_constructor(**self.tool_constructor_params) class ToolsUnitTests(ToolsTests): """ Base class for tools unit tests. """ @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: """Return env vars, init args, and expected instance attrs for initializing from env vars.""" return {}, {}, {} def test_init(self) -> None: """ Test that the tool can be initialized with :attr:`tool_constructor` and :attr:`tool_constructor_params`. If this fails, check that the keyword args defined in :attr:`tool_constructor_params` are valid. """ if isinstance(self.tool_constructor, BaseTool): tool = self.tool_constructor else: tool = self.tool_constructor(**self.tool_constructor_params) assert tool is not None def test_init_from_env(self) -> None: env_params, tools_params, expected_attrs = self.init_from_env_params if env_params: with mock.patch.dict(os.environ, env_params): tool = self.tool_constructor(**tools_params) assert tool is not None for k, expected in expected_attrs.items(): actual = getattr(tool, k) if isinstance(actual, SecretStr): actual = actual.get_secret_value() assert actual == expected def test_has_name(self, tool: BaseTool) -> None: """ Tests that the tool has a name attribute to pass to chat models. If this fails, add a `name` parameter to your tool. """ assert tool.name def test_has_input_schema(self, tool: BaseTool) -> None: """ Tests that the tool has an input schema. If this fails, add an `args_schema` to your tool. See `this guide `_ and see how `CalculatorInput` is configured in the `CustomCalculatorTool.args_schema` attribute """ assert tool.get_input_schema() def test_input_schema_matches_invoke_params(self, tool: BaseTool) -> None: """ Tests that the provided example params match the declared input schema. If this fails, update the `tool_invoke_params_example` attribute to match the input schema (`args_schema`) of the tool. """ # this will be a pydantic object input_schema = tool.get_input_schema() assert input_schema(**self.tool_invoke_params_example)