{ "cells": [ { "cell_type": "markdown", "id": "16f2c32e", "metadata": {}, "source": [ "## Document Loading\n", "\n", "Load a blog post on agents." ] }, { "cell_type": "code", "execution_count": 1, "id": "c9fadce0", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import WebBaseLoader\n", "loader = WebBaseLoader(\"https://lilianweng.github.io/posts/2023-06-23-agent/\")\n", "text = loader.load()" ] }, { "cell_type": "markdown", "id": "4086be03", "metadata": {}, "source": [ "## Run Template\n", "\n", "\n", "As shown in the README, add template and start server:\n", "```\n", "langchain serve add openai-functions\n", "langchain start\n", "```\n", "\n", "We can now look at the endpoints:\n", "\n", "http://127.0.0.1:8000/docs#\n", "\n", "And specifically at our loaded template:\n", "\n", "http://127.0.0.1:8000/docs#/default/invoke_openai_functions_invoke_post\n", " \n", "We can also use remote runnable to call it." ] }, { "cell_type": "code", "execution_count": 2, "id": "ed507784", "metadata": {}, "outputs": [], "source": [ "from langserve.client import RemoteRunnable\n", "oai_function = RemoteRunnable('http://localhost:8000/openai-functions')" ] }, { "cell_type": "markdown", "id": "68046695", "metadata": {}, "source": [ "The function call will perform tagging:\n", "\n", "* summarize\n", "* provide keywords\n", "* provide language" ] }, { "cell_type": "code", "execution_count": 3, "id": "6dace748", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='', additional_kwargs={'function_call': {'name': 'Overview', 'arguments': '{\\n \"summary\": \"This article discusses the concept of building agents with LLM (large language model) as their core controller. It explores the potentiality of LLM as a general problem solver and describes the key components of an LLM-powered autonomous agent system, including planning, memory, and tool use. The article also presents case studies and challenges related to building LLM-powered agents.\",\\n \"language\": \"English\",\\n \"keywords\": \"LLM, autonomous agents, planning, memory, tool use, case studies, challenges\"\\n}'}})" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oai_function.invoke(text[0].page_content[0:1500])" ] } ], "metadata": { "kernelspec": { "display_name": "langserve", "language": "python", "name": "langserve" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 }