from __future__ import annotations import copy import pathlib import re from io import BytesIO, StringIO from typing import ( Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, TypedDict, cast, ) import requests from langchain_core._api import beta from langchain_core.documents import BaseDocumentTransformer, Document from langchain_text_splitters.character import RecursiveCharacterTextSplitter class ElementType(TypedDict): """Element type as typed dict.""" url: str xpath: str content: str metadata: Dict[str, str] class HTMLHeaderTextSplitter: """Splitting HTML files based on specified headers. Requires lxml package. """ def __init__( self, headers_to_split_on: List[Tuple[str, str]], return_each_element: bool = False, ): """Create a new HTMLHeaderTextSplitter. Args: headers_to_split_on: list of tuples of headers we want to track mapped to (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4, h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2)]. return_each_element: Return each element w/ associated headers. """ # Output element-by-element or aggregated into chunks w/ common headers self.return_each_element = return_each_element self.headers_to_split_on = sorted(headers_to_split_on) def aggregate_elements_to_chunks( self, elements: List[ElementType] ) -> List[Document]: """Combine elements with common metadata into chunks. Args: elements: HTML element content with associated identifying info and metadata """ aggregated_chunks: List[ElementType] = [] for element in elements: if ( aggregated_chunks and aggregated_chunks[-1]["metadata"] == element["metadata"] ): # If the last element in the aggregated list # has the same metadata as the current element, # append the current content to the last element's content aggregated_chunks[-1]["content"] += " \n" + element["content"] else: # Otherwise, append the current element to the aggregated list aggregated_chunks.append(element) return [ Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in aggregated_chunks ] def split_text_from_url(self, url: str, **kwargs: Any) -> List[Document]: """Split HTML from web URL. Args: url: web URL **kwargs: Arbitrary additional keyword arguments. These are usually passed to the fetch url content request. """ r = requests.get(url, **kwargs) return self.split_text_from_file(BytesIO(r.content)) def split_text(self, text: str) -> List[Document]: """Split HTML text string. Args: text: HTML text """ return self.split_text_from_file(StringIO(text)) def split_text_from_file(self, file: Any) -> List[Document]: """Split HTML file. Args: file: HTML file """ try: from lxml import etree except ImportError as e: raise ImportError( "Unable to import lxml, please install with `pip install lxml`." ) from e # use lxml library to parse html document and return xml ElementTree # Explicitly encoding in utf-8 allows non-English # html files to be processed without garbled characters parser = etree.HTMLParser(encoding="utf-8") tree = etree.parse(file, parser) # document transformation for "structure-aware" chunking is handled with xsl. # see comments in html_chunks_with_headers.xslt for more detailed information. xslt_path = pathlib.Path(__file__).parent / "xsl/html_chunks_with_headers.xslt" xslt_tree = etree.parse(xslt_path) transform = etree.XSLT(xslt_tree) result = transform(tree) result_dom = etree.fromstring(str(result)) # create filter and mapping for header metadata header_filter = [header[0] for header in self.headers_to_split_on] header_mapping = dict(self.headers_to_split_on) # map xhtml namespace prefix ns_map = {"h": "http://www.w3.org/1999/xhtml"} # build list of elements from DOM elements = [] for element in result_dom.findall("*//*", ns_map): if element.findall("*[@class='headers']") or element.findall( "*[@class='chunk']" ): elements.append( ElementType( url=file, xpath="".join( [ node.text or "" for node in element.findall("*[@class='xpath']", ns_map) ] ), content="".join( [ node.text or "" for node in element.findall("*[@class='chunk']", ns_map) ] ), metadata={ # Add text of specified headers to metadata using header # mapping. header_mapping[node.tag]: node.text or "" for node in filter( lambda x: x.tag in header_filter, element.findall("*[@class='headers']/*", ns_map), ) }, ) ) if not self.return_each_element: return self.aggregate_elements_to_chunks(elements) else: return [ Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in elements ] class HTMLSectionSplitter: """Splitting HTML files based on specified tag and font sizes. Requires lxml package. """ def __init__( self, headers_to_split_on: List[Tuple[str, str]], xslt_path: Optional[str] = None, **kwargs: Any, ) -> None: """Create a new HTMLSectionSplitter. Args: headers_to_split_on: list of tuples of headers we want to track mapped to (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4, h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2"]. xslt_path: path to xslt file for document transformation. Uses a default if not passed. Needed for html contents that using different format and layouts. **kwargs (Any): Additional optional arguments for customizations. """ self.headers_to_split_on = dict(headers_to_split_on) if xslt_path is None: self.xslt_path = ( pathlib.Path(__file__).parent / "xsl/converting_to_header.xslt" ).absolute() else: self.xslt_path = pathlib.Path(xslt_path).absolute() self.kwargs = kwargs def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) results = self.create_documents(texts, metadatas=metadatas) text_splitter = RecursiveCharacterTextSplitter(**self.kwargs) return text_splitter.split_documents(results) def split_text(self, text: str) -> List[Document]: """Split HTML text string. Args: text: HTML text """ return self.split_text_from_file(StringIO(text)) def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): metadata = copy.deepcopy(_metadatas[i]) for key in chunk.metadata.keys(): if chunk.metadata[key] == "#TITLE#": chunk.metadata[key] = metadata["Title"] metadata = {**metadata, **chunk.metadata} new_doc = Document(page_content=chunk.page_content, metadata=metadata) documents.append(new_doc) return documents def split_html_by_headers(self, html_doc: str) -> List[Dict[str, Optional[str]]]: """Split an HTML document into sections based on specified header tags. This method uses BeautifulSoup to parse the HTML content and divides it into sections based on headers defined in `headers_to_split_on`. Each section contains the header text, content under the header, and the tag name. Args: html_doc (str): The HTML document to be split into sections. Returns: List[Dict[str, Optional[str]]]: A list of dictionaries representing sections. Each dictionary contains: - 'header': The header text or a default title for the first section. - 'content': The content under the header. - 'tag_name': The name of the header tag (e.g., "h1", "h2"). """ try: from bs4 import BeautifulSoup, PageElement # type: ignore[import-untyped] except ImportError as e: raise ImportError( "Unable to import BeautifulSoup/PageElement, \ please install with `pip install \ bs4`." ) from e soup = BeautifulSoup(html_doc, "html.parser") headers = list(self.headers_to_split_on.keys()) sections: list[dict[str, str | None]] = [] headers = soup.find_all(["body"] + headers) for i, header in enumerate(headers): header_element: PageElement = header if i == 0: current_header = "#TITLE#" current_header_tag = "h1" section_content: List = [] else: current_header = header_element.text.strip() current_header_tag = header_element.name # type: ignore[attr-defined] section_content = [] for element in header_element.next_elements: if i + 1 < len(headers) and element == headers[i + 1]: break if isinstance(element, str): section_content.append(element) content = " ".join(section_content).strip() if content != "": sections.append( { "header": current_header, "content": content, "tag_name": current_header_tag, } ) return sections def convert_possible_tags_to_header(self, html_content: str) -> str: """Convert specific HTML tags to headers using an XSLT transformation. This method uses an XSLT file to transform the HTML content, converting certain tags into headers for easier parsing. If no XSLT path is provided, the HTML content is returned unchanged. Args: html_content (str): The HTML content to be transformed. Returns: str: The transformed HTML content as a string. """ if self.xslt_path is None: return html_content try: from lxml import etree except ImportError as e: raise ImportError( "Unable to import lxml, please install with `pip install lxml`." ) from e # use lxml library to parse html document and return xml ElementTree parser = etree.HTMLParser() tree = etree.parse(StringIO(html_content), parser) xslt_tree = etree.parse(self.xslt_path) transform = etree.XSLT(xslt_tree) result = transform(tree) return str(result) def split_text_from_file(self, file: Any) -> List[Document]: """Split HTML file. Args: file: HTML file """ file_content = file.getvalue() file_content = self.convert_possible_tags_to_header(file_content) sections = self.split_html_by_headers(file_content) return [ Document( cast(str, section["content"]), metadata={ self.headers_to_split_on[str(section["tag_name"])]: section[ "header" ] }, ) for section in sections ] @beta() class HTMLSemanticPreservingSplitter(BaseDocumentTransformer): """Split HTML content preserving semantic structure. Splits HTML content by headers into generalized chunks, preserving semantic structure. If chunks exceed the maximum chunk size, it uses RecursiveCharacterTextSplitter for further splitting. The splitter preserves full HTML elements (e.g.,