{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Gradient\n", "\n", "`Gradient` allows to create `Embeddings` as well fine tune and get completions on LLMs with a simple web API.\n", "\n", "This notebook goes over how to use Langchain with Embeddings of [Gradient](https://gradient.ai/).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings import GradientEmbeddings" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set the Environment API Key\n", "Make sure to get your API key from Gradient AI. You are given $10 in free credits to test and fine-tune different models." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from getpass import getpass\n", "import os\n", "\n", "if not os.environ.get(\"GRADIENT_ACCESS_TOKEN\",None):\n", " # Access token under https://auth.gradient.ai/select-workspace\n", " os.environ[\"GRADIENT_ACCESS_TOKEN\"] = getpass(\"gradient.ai access token:\")\n", "if not os.environ.get(\"GRADIENT_WORKSPACE_ID\",None):\n", " # `ID` listed in `$ gradient workspace list`\n", " # also displayed after login at at https://auth.gradient.ai/select-workspace\n", " os.environ[\"GRADIENT_WORKSPACE_ID\"] = getpass(\"gradient.ai workspace id:\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Optional: Validate your Enviroment variables ```GRADIENT_ACCESS_TOKEN``` and ```GRADIENT_WORKSPACE_ID``` to get currently deployed models. Using the `gradientai` Python package." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install gradientai" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create the Gradient instance" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "documents = [\"Pizza is a dish.\",\"Paris is the capital of France\", \"numpy is a lib for linear algebra\"]\n", "query = \"Where is Paris?\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = GradientEmbeddings(\n", " model=\"bge-large\"\n", ")\n", "\n", "documents_embedded = embeddings.embed_documents(documents)\n", "query_result = embeddings.embed_query(query)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# (demo) compute similarity\n", "import numpy as np\n", "\n", "scores = np.array(documents_embedded) @ np.array(query_result).T\n", "dict(zip(documents, scores))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03" } } }, "nbformat": 4, "nbformat_minor": 4 }