{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Neptune Open Cypher QA Chain\n", "This QA chain queries Neptune graph database using openCypher and returns human readable response\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from langchain.graphs import NeptuneGraph\n", "\n", "\n", "host = \"\"\n", "port = 80\n", "use_https = False\n", "\n", "graph = NeptuneGraph(host=host, port=port, use_https=use_https)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'The Austin airport has 98 outgoing routes.'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.chains import NeptuneOpenCypherQAChain\n", "\n", "llm = ChatOpenAI(temperature=0, model=\"gpt-4\")\n", "\n", "chain = NeptuneOpenCypherQAChain.from_llm(llm=llm, graph=graph)\n", "\n", "chain.run(\"how many outgoing routes does the Austin airport have?\")" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }