{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# MiniMax\n", "\n", "[Minimax](https://api.minimax.chat) is a Chinese startup that provides LLM service for companies and individuals.\n", "\n", "This example goes over how to use LangChain to interact with MiniMax Inference for Chat." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "os.environ[\"MINIMAX_GROUP_ID\"] = \"MINIMAX_GROUP_ID\"\n", "os.environ[\"MINIMAX_API_KEY\"] = \"MINIMAX_API_KEY\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.chat_models import MiniMaxChat\n", "from langchain.schema import HumanMessage" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "chat = MiniMaxChat()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "chat(\n", " [\n", " HumanMessage(\n", " content=\"Translate this sentence from English to French. I love programming.\"\n", " )\n", " ]\n", ")" ] } ], "metadata": { "language_info": { "name": "python" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }