{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# SageMakerEndpoint\n", "\n", "[Amazon SageMaker](https://aws.amazon.com/sagemaker/) is a system that can build, train, and deploy machine learning (ML) models for any use case with fully managed infrastructure, tools, and workflows.\n", "\n", "This notebooks goes over how to use an LLM hosted on a `SageMaker endpoint`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "!pip3 install langchain boto3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You have to set up following required parameters of the `SagemakerEndpoint` call:\n", "- `endpoint_name`: The name of the endpoint from the deployed Sagemaker model.\n", " Must be unique within an AWS Region.\n", "- `credentials_profile_name`: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which\n", " has either access keys or role information specified.\n", " If not specified, the default credential profile or, if on an EC2 instance,\n", " credentials from IMDS will be used.\n", " See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain_core.documents import Document" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [], "source": [ "example_doc_1 = \"\"\"\n", "Peter and Elizabeth took a taxi to attend the night party in the city. While in the party, Elizabeth collapsed and was rushed to the hospital.\n", "Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well.\n", "Therefore, Peter stayed with her at the hospital for 3 days without leaving.\n", "\"\"\"\n", "\n", "docs = [\n", " Document(\n", " page_content=example_doc_1,\n", " )\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example to initialize with external boto3 session\n", "\n", "### for cross account scenarios" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "import json\n", "from typing import Dict\n", "\n", "import boto3\n", "from langchain.chains.question_answering import load_qa_chain\n", "from langchain_community.llms import SagemakerEndpoint\n", "from langchain_community.llms.sagemaker_endpoint import LLMContentHandler\n", "from langchain_core.prompts import PromptTemplate\n", "\n", "query = \"\"\"How long was Elizabeth hospitalized?\n", "\"\"\"\n", "\n", "prompt_template = \"\"\"Use the following pieces of context to answer the question at the end.\n", "\n", "{context}\n", "\n", "Question: {question}\n", "Answer:\"\"\"\n", "PROMPT = PromptTemplate(\n", " template=prompt_template, input_variables=[\"context\", \"question\"]\n", ")\n", "\n", "roleARN = \"arn:aws:iam::123456789:role/cross-account-role\"\n", "sts_client = boto3.client(\"sts\")\n", "response = sts_client.assume_role(\n", " RoleArn=roleARN, RoleSessionName=\"CrossAccountSession\"\n", ")\n", "\n", "client = boto3.client(\n", " \"sagemaker-runtime\",\n", " region_name=\"us-west-2\",\n", " aws_access_key_id=response[\"Credentials\"][\"AccessKeyId\"],\n", " aws_secret_access_key=response[\"Credentials\"][\"SecretAccessKey\"],\n", " aws_session_token=response[\"Credentials\"][\"SessionToken\"],\n", ")\n", "\n", "\n", "class ContentHandler(LLMContentHandler):\n", " content_type = \"application/json\"\n", " accepts = \"application/json\"\n", "\n", " def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:\n", " input_str = json.dumps({\"inputs\": prompt, \"parameters\": model_kwargs})\n", " return input_str.encode(\"utf-8\")\n", "\n", " def transform_output(self, output: bytes) -> str:\n", " response_json = json.loads(output.read().decode(\"utf-8\"))\n", " return response_json[0][\"generated_text\"]\n", "\n", "\n", "content_handler = ContentHandler()\n", "\n", "chain = load_qa_chain(\n", " llm=SagemakerEndpoint(\n", " endpoint_name=\"endpoint-name\",\n", " client=client,\n", " model_kwargs={\"temperature\": 1e-10},\n", " content_handler=content_handler,\n", " ),\n", " prompt=PROMPT,\n", ")\n", "\n", "chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "from typing import Dict\n", "\n", "from langchain.chains.question_answering import load_qa_chain\n", "from langchain_community.llms import SagemakerEndpoint\n", "from langchain_community.llms.sagemaker_endpoint import LLMContentHandler\n", "from langchain_core.prompts import PromptTemplate\n", "\n", "query = \"\"\"How long was Elizabeth hospitalized?\n", "\"\"\"\n", "\n", "prompt_template = \"\"\"Use the following pieces of context to answer the question at the end.\n", "\n", "{context}\n", "\n", "Question: {question}\n", "Answer:\"\"\"\n", "PROMPT = PromptTemplate(\n", " template=prompt_template, input_variables=[\"context\", \"question\"]\n", ")\n", "\n", "\n", "class ContentHandler(LLMContentHandler):\n", " content_type = \"application/json\"\n", " accepts = \"application/json\"\n", "\n", " def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:\n", " input_str = json.dumps({\"inputs\": prompt, \"parameters\": model_kwargs})\n", " return input_str.encode(\"utf-8\")\n", "\n", " def transform_output(self, output: bytes) -> str:\n", " response_json = json.loads(output.read().decode(\"utf-8\"))\n", " return response_json[0][\"generated_text\"]\n", "\n", "\n", "content_handler = ContentHandler()\n", "\n", "chain = load_qa_chain(\n", " llm=SagemakerEndpoint(\n", " endpoint_name=\"endpoint-name\",\n", " credentials_profile_name=\"credentials-profile-name\",\n", " region_name=\"us-west-2\",\n", " model_kwargs={\"temperature\": 1e-10},\n", " content_handler=content_handler,\n", " ),\n", " prompt=PROMPT,\n", ")\n", "\n", "chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "vscode": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } }, "nbformat": 4, "nbformat_minor": 4 }