mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-24 03:52:08 +00:00
139 lines
4.6 KiB
Python
139 lines
4.6 KiB
Python
from __future__ import annotations
|
|
|
|
from copy import deepcopy
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
|
|
|
|
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
|
|
from langchain_core.callbacks.manager import Callbacks
|
|
from langchain_core.documents import Document
|
|
from pydantic import ConfigDict, model_validator
|
|
|
|
if TYPE_CHECKING:
|
|
from infinity_client.api.default import rerank
|
|
from infinity_client.client import Client
|
|
from infinity_client.models import RerankInput
|
|
else:
|
|
# Avoid pydantic annotation issues when actually instantiating
|
|
# while keeping this import optional
|
|
try:
|
|
from infinity_client.api.default import rerank
|
|
from infinity_client.client import Client
|
|
from infinity_client.models import RerankInput
|
|
except ImportError:
|
|
pass
|
|
|
|
DEFAULT_MODEL_NAME = "BAAI/bge-reranker-base"
|
|
DEFAULT_BASE_URL = "http://localhost:7997"
|
|
|
|
|
|
class InfinityRerank(BaseDocumentCompressor):
|
|
"""Document compressor that uses `Infinity Rerank API`."""
|
|
|
|
client: Optional[Client] = None
|
|
"""Infinity client to use for compressing documents."""
|
|
|
|
model: Optional[str] = None
|
|
"""Model to use for reranking."""
|
|
|
|
top_n: Optional[int] = 3
|
|
"""Number of documents to return."""
|
|
|
|
model_config = ConfigDict(
|
|
populate_by_name=True,
|
|
arbitrary_types_allowed=True,
|
|
extra="forbid",
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict) -> Any:
|
|
"""Validate that python package exists in environment."""
|
|
if "client" in values:
|
|
return values
|
|
else:
|
|
try:
|
|
from infinity_client.client import Client
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import infinity_client python package. "
|
|
"Please install it with `pip install infinity_client`."
|
|
)
|
|
|
|
values["model"] = values.get("model", DEFAULT_MODEL_NAME)
|
|
values["client"] = Client(base_url=DEFAULT_BASE_URL)
|
|
return values
|
|
|
|
def rerank(
|
|
self,
|
|
documents: Sequence[Union[str, Document, dict]],
|
|
query: str,
|
|
*,
|
|
model: Optional[str] = None,
|
|
top_n: Optional[int] = -1,
|
|
) -> List[Dict[str, Any]]:
|
|
"""Returns an ordered list of documents ordered by their relevance to the provided query.
|
|
|
|
Args:
|
|
query: The query to use for reranking.
|
|
documents: A sequence of documents to rerank.
|
|
model: The model to use for re-ranking. Default to self.model.
|
|
top_n : The number of results to return. If None returns all results.
|
|
Defaults to self.top_n.
|
|
max_chunks_per_doc : The maximum number of chunks derived from a document.
|
|
""" # noqa: E501
|
|
if len(documents) == 0: # to avoid empty api call
|
|
return []
|
|
docs = [
|
|
doc.page_content if isinstance(doc, Document) else doc for doc in documents
|
|
]
|
|
model = model or self.model
|
|
|
|
input = RerankInput(
|
|
query=query,
|
|
documents=docs,
|
|
model=model,
|
|
)
|
|
results = rerank.sync(client=self.client, body=input)
|
|
|
|
if hasattr(results, "results"):
|
|
results = getattr(results, "results")
|
|
|
|
result_dicts = []
|
|
for res in results:
|
|
result_dicts.append(
|
|
{
|
|
"index": res.index,
|
|
"relevance_score": res.relevance_score,
|
|
}
|
|
)
|
|
|
|
result_dicts.sort(key=lambda x: x["relevance_score"], reverse=True)
|
|
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
|
|
|
|
return result_dicts[:top_n]
|
|
|
|
def compress_documents(
|
|
self,
|
|
documents: Sequence[Document],
|
|
query: str,
|
|
callbacks: Optional[Callbacks] = None,
|
|
) -> Sequence[Document]:
|
|
"""
|
|
Compress documents using Infinity's rerank API.
|
|
|
|
Args:
|
|
documents: A sequence of documents to compress.
|
|
query: The query to use for compressing the documents.
|
|
callbacks: Callbacks to run during the compression process.
|
|
|
|
Returns:
|
|
A sequence of compressed documents.
|
|
"""
|
|
compressed = []
|
|
for res in self.rerank(documents, query):
|
|
doc = documents[res["index"]]
|
|
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
|
|
doc_copy.metadata["relevance_score"] = res["relevance_score"]
|
|
compressed.append(doc_copy)
|
|
return compressed
|