mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-28 06:48:50 +00:00
This PR upgrades langchain-community to pydantic 2.
* Most of this PR was auto-generated using code mods with gritql
(https://github.com/eyurtsev/migrate-pydantic/tree/main)
* Subsequently, some code was fixed manually due to accommodate
differences between pydantic 1 and 2
Breaking Changes:
- Use TEXTEMBED_API_KEY and TEXTEMBEB_API_URL for env variables for text
embed integrations:
cbea780492
Other changes:
- Added pydantic_settings as a required dependency for community. This
may be removed if we have enough time to convert the dependency into an
optional one.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
91 lines
2.8 KiB
Python
91 lines
2.8 KiB
Python
"""Utils for interacting with the Semantic Scholar API."""
|
|
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from pydantic import BaseModel, model_validator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SemanticScholarAPIWrapper(BaseModel):
|
|
"""Wrapper around semanticscholar.org API.
|
|
https://github.com/danielnsilva/semanticscholar
|
|
|
|
You should have this library installed.
|
|
|
|
`pip install semanticscholar`
|
|
|
|
Semantic Scholar API can conduct searches and fetch document metadata
|
|
like title, abstract, authors, etc.
|
|
|
|
Attributes:
|
|
top_k_results: number of the top-scored document used for the Semantic Scholar tool
|
|
load_max_docs: a limit to the number of loaded documents
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.utilities.semanticscholar import SemanticScholarAPIWrapper
|
|
ss = SemanticScholarAPIWrapper(
|
|
top_k_results = 3,
|
|
load_max_docs = 3
|
|
)
|
|
ss.run("biases in large language models")
|
|
"""
|
|
|
|
semanticscholar_search: Any #: :meta private:
|
|
top_k_results: int = 5
|
|
S2_MAX_QUERY_LENGTH: int = 300
|
|
load_max_docs: int = 100
|
|
doc_content_chars_max: Optional[int] = 4000
|
|
returned_fields: List[str] = [
|
|
"title",
|
|
"abstract",
|
|
"venue",
|
|
"year",
|
|
"paperId",
|
|
"citationCount",
|
|
"openAccessPdf",
|
|
"authors",
|
|
"externalIds",
|
|
]
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict) -> Any:
|
|
"""Validate that the python package exists in environment."""
|
|
try:
|
|
from semanticscholar import SemanticScholar
|
|
|
|
sch = SemanticScholar()
|
|
values["semanticscholar_search"] = sch.search_paper
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import Semanticscholar python package. "
|
|
"Please install it with `pip install semanticscholar`."
|
|
)
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""Run the Semantic Scholar API."""
|
|
results = self.semanticscholar_search(
|
|
query, limit=self.load_max_docs, fields=self.returned_fields
|
|
)
|
|
documents = []
|
|
for item in results[: self.top_k_results]:
|
|
authors = ", ".join(
|
|
author["name"] for author in getattr(item, "authors", [])
|
|
)
|
|
documents.append(
|
|
f"Published year: {getattr(item, 'year', None)}\n"
|
|
f"Title: {getattr(item, 'title', None)}\n"
|
|
f"Authors: {authors}\n"
|
|
f"Abstract: {getattr(item, 'abstract', None)}\n"
|
|
)
|
|
|
|
if documents:
|
|
return "\n\n".join(documents)[: self.doc_content_chars_max]
|
|
else:
|
|
return "No results found."
|