Files
langchain/libs/langchain_v1/Makefile
Sydney Runkle 18db07c292 feat(langchain): revamped create_react_agent (#32705)
Adding `create_react_agent` and introducing `langchain.agents`!

## Enhanced Structured Output

`create_react_agent` supports coercion of outputs to structured data
types like `pydantic` models, dataclasses, typed dicts, or JSON schemas
specifications.

### Structural Changes

In langgraph < 1.0, `create_react_agent` implemented support for
structured output via an additional LLM call to the model after the
standard model / tool calling loop finished. This introduced extra
expense and was unnecessary.

This new version implements structured output support in the main loop,
allowing a model to choose between calling tools or generating
structured output (or both).

The same basic pattern for structured output generation works:

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent("openai:gpt-4o-mini", tools=[weather_tool], response_format=Weather)
print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

### Advanced Configuration

The new API exposes two ways to configure how structured output is
generated. Under the hood, LangChain will attempt to pick the best
approach if not explicitly specified. That is, if provider native
support is available for a given model, that takes priority over
artificial tool calling.

1. Artificial tool calling (the default for most models)

LangChain generates a tool (or tools) under the hood that match the
schema of your response format. When the model calls those tools,
LangChain coerces the args to the desired format. Note, LangChain does
not validate outputs adhering to JSON schema specifications.

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ToolStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather, tool_message_content="Final Weather result generated"
    ),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_Gg933BMHMwck50Q39dtBjXm7)
 Call ID: call_Gg933BMHMwck50Q39dtBjXm7
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================
Tool Calls:
  Weather (call_9xOkYUM7PuEXl9DQq9sWGv5l)
 Call ID: call_9xOkYUM7PuEXl9DQq9sWGv5l
  Args:
    temperature: 70
    condition: sunny
================================= Tool Message =================================
Name: Weather

Final Weather result generated
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

</details>

2. Provider implementations (limited to OpenAI, Groq)

Some providers support structured output generating directly. For those
cases, we offer the `ProviderStrategy` hint:

<details>
<summary>Extended example</summary>

```py
from langchain.agents import create_react_agent
from langchain_core.messages import HumanMessage
from langchain.agents.structured_output import ProviderStrategy
from pydantic import BaseModel


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""

    return f"it's sunny and 70 degrees in {city}"


agent = create_react_agent(
    "openai:gpt-4o-mini",
    tools=[weather_tool],
    response_format=ProviderStrategy(Weather),
)

result = agent.invoke({"messages": [HumanMessage("What's the weather in Tokyo?")]})
for message in result["messages"]:
    message.pretty_print()

"""
================================ Human Message =================================

What's the weather in Tokyo?
================================== Ai Message ==================================
Tool Calls:
  weather_tool (call_OFJq1FngIXS6cvjWv5nfSFZp)
 Call ID: call_OFJq1FngIXS6cvjWv5nfSFZp
  Args:
    city: Tokyo
================================= Tool Message =================================
Name: weather_tool

it's sunny and 70 degrees in Tokyo
================================== Ai Message ==================================

{"temperature":70,"condition":"sunny"}
Weather(temperature=70.0, condition='sunny')
"""

print(repr(result["structured_response"]))
#> Weather(temperature=70.0, condition='sunny')
```

Note! The final tool message has the custom content provided by the dev.

</details>

Prompted output was previously supported and is no longer supported via
the `response_format` argument to `create_react_agent`. If there's
significant demand for this, we'd be happy to engineer a solution.

## Error Handling

`create_react_agent` now exposes an API for managing errors associated
with structured output generation. There are two common problems with
structured output generation (w/ artificial tool calling):

1. **Parsing error** -- the model generates data that doesn't match the
desired structure for the output
2. **Multiple tool calls error** -- the model generates 2 or more tool
calls associated with structured output schemas

A developer can control the desired behavior for this via the
`handle_errors` arg to `ToolStrategy`.

<details>
<summary>Extended example</summary>

```py
from langchain_core.messages import HumanMessage
from pydantic import BaseModel

from langchain.agents import create_react_agent
from langchain.agents.structured_output import StructuredOutputValidationError, ToolStrategy


class Weather(BaseModel):
    temperature: float
    condition: str


def weather_tool(city: str) -> str:
    """Get the weather for a city."""
    return f"it's sunny and 70 degrees in {city}"


def handle_validation_error(error: Exception) -> str:
    if isinstance(error, StructuredOutputValidationError):
        return (
            f"Please call the {error.tool_name} call again with the correct arguments. "
            f"Your mistake was: {error.source}"
        )
    raise error


agent = create_react_agent(
    "openai:gpt-5",
    tools=[weather_tool],
    response_format=ToolStrategy(
        schema=Weather,
        handle_errors=handle_validation_error,
    ),
)
```

</details>

## Error Handling for Tool Calling

Tools fail for two main reasons:

1. **Invocation failure** -- the args generated by the model for the
tool are incorrect (missing, incompatible data types, etc)
2. **Execution failure** -- the tool execution itself fails due to a
developer error, network error, or some other exception.

By default, when tool **invocation** fails, the react agent will return
an artificial `ToolMessage` to the model asking it to correct its
mistakes and retry.

Now, when tool **execution** fails, the react agent raises the
`ToolException` by default instead of asking the model to retry. This
helps to avoid looping that should be avoided due to the aforementioned
issues.

Developers can configure their desired behavior for retries / error
handling via the `handle_tool_errors` arg to `ToolNode`.

## Pre-Bound Models

`create_react_agent` no longer supports inputs to `model` that have been
pre-bound w/ tools or other configuration. To properly support
structured output generation, the agent itself needs the power to bind
tools + structured output kwargs.

This also makes the devx cleaner - it's always expected that `model` is
an instance of `BaseChatModel` (or `str` that we coerce into a chat
model instance).

Dynamic model functions can return a pre-bound model **IF** structured
output is not also used. Dynamic model functions can then bind tools /
structured output logic.

## Import Changes

Users should now use `create_react_agent` from `langchain.agents`
instead of `langgraph.prebuilts`.
Other imports have a similar migration path, `ToolNode` and `AgentState`
for example.

* `chat_agent_executor.py` -> `react_agent.py`

Some notes:
1. Disabled blockbuster + some linting in `langchain/agents` -- beyond
ideal, but necessary to get this across the line for the alpha. We
should re-enable before official release.
2025-08-27 17:32:21 +00:00

119 lines
4.8 KiB
Makefile

.PHONY: all clean docs_build docs_clean docs_linkcheck api_docs_build api_docs_clean api_docs_linkcheck format lint test tests test_watch integration_tests help extended_tests start_services stop_services
# Default target executed when no arguments are given to make.
all: help
######################
# TESTING AND COVERAGE
######################
start_services:
docker compose -f tests/unit_tests/agents/compose-postgres.yml -f tests/unit_tests/agents/compose-redis.yml up -V --force-recreate --wait --remove-orphans
stop_services:
docker compose -f tests/unit_tests/agents/compose-postgres.yml -f tests/unit_tests/agents/compose-redis.yml down -v
# Define a variable for the test file path.
TEST_FILE ?= tests/unit_tests/
.EXPORT_ALL_VARIABLES:
UV_FROZEN = true
# Run unit tests and generate a coverage report.
coverage:
uv run --group test pytest --cov \
--cov-config=.coveragerc \
--cov-report xml \
--cov-report term-missing:skip-covered \
$(TEST_FILE)
test:
make start_services && LANGGRAPH_TEST_FAST=0 uv run --group test pytest -n auto --disable-socket --allow-unix-socket $(TEST_FILE) --cov-report term-missing:skip-covered; \
EXIT_CODE=$$?; \
make stop_services; \
exit $$EXIT_CODE
test_fast:
LANGGRAPH_TEST_FAST=1 uv run --group test pytest -n auto --disable-socket --allow-unix-socket $(TEST_FILE)
extended_tests:
make start_services && LANGGRAPH_TEST_FAST=0 uv run --group test pytest --disable-socket --allow-unix-socket --only-extended tests/unit_tests; \
EXIT_CODE=$$?; \
make stop_services; \
exit $$EXIT_CODE
test_watch:
make start_services && LANGGRAPH_TEST_FAST=0 uv run --group test ptw --snapshot-update --now . -- -x --disable-socket --allow-unix-socket --disable-warnings tests/unit_tests; \
EXIT_CODE=$$?; \
make stop_services; \
exit $$EXIT_CODE
test_watch_extended:
make start_services && LANGGRAPH_TEST_FAST=0 uv run --group test ptw --snapshot-update --now . -- -x --disable-socket --allow-unix-socket --only-extended tests/unit_tests; \
EXIT_CODE=$$?; \
make stop_services; \
exit $$EXIT_CODE
integration_tests:
uv run --group test --group test_integration pytest tests/integration_tests
check_imports: $(shell find langchain -name '*.py')
uv run python ./scripts/check_imports.py $^
######################
# LINTING AND FORMATTING
######################
# Define a variable for Python and notebook files.
PYTHON_FILES=.
MYPY_CACHE=.mypy_cache
lint format: PYTHON_FILES=.
lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/langchain --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
lint_package: PYTHON_FILES=langchain
lint_tests: PYTHON_FILES=tests
lint_tests: MYPY_CACHE=.mypy_cache_test
lint lint_diff lint_package lint_tests:
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff check $(PYTHON_FILES)
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff format $(PYTHON_FILES) --diff
[ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && uv run --all-groups mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE)
format format_diff:
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff format $(PYTHON_FILES)
[ "$(PYTHON_FILES)" = "" ] || uv run --all-groups ruff check --fix $(PYTHON_FILES)
spell_check:
uv run --all-groups codespell --toml pyproject.toml
spell_fix:
uv run --all-groups codespell --toml pyproject.toml -w
######################
# HELP
######################
help:
@echo '===================='
@echo 'clean - run docs_clean and api_docs_clean'
@echo 'docs_build - build the documentation'
@echo 'docs_clean - clean the documentation build artifacts'
@echo 'docs_linkcheck - run linkchecker on the documentation'
@echo 'api_docs_build - build the API Reference documentation'
@echo 'api_docs_clean - clean the API Reference documentation build artifacts'
@echo 'api_docs_linkcheck - run linkchecker on the API Reference documentation'
@echo '-- LINTING --'
@echo 'format - run code formatters'
@echo 'lint - run linters'
@echo 'spell_check - run codespell on the project'
@echo 'spell_fix - run codespell on the project and fix the errors'
@echo '-- TESTS --'
@echo 'coverage - run unit tests and generate coverage report'
@echo 'test - run unit tests with all services'
@echo 'test_fast - run unit tests with in-memory services only'
@echo 'tests - run unit tests (alias for "make test")'
@echo 'test TEST_FILE=<test_file> - run all tests in file'
@echo 'extended_tests - run only extended unit tests'
@echo 'test_watch - run unit tests in watch mode'
@echo 'integration_tests - run integration tests'
@echo '-- DOCUMENTATION tasks are from the top-level Makefile --'