mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-28 01:19:31 +00:00
This is one part of a larger Pull Request (PR) that is too large to be submitted all at once. This specific part focuses on updating the PyPDFium2 parser. For more details, see https://github.com/langchain-ai/langchain/pull/28970.
1426 lines
51 KiB
Python
1426 lines
51 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import tempfile
|
|
import time
|
|
from abc import ABC
|
|
from io import StringIO
|
|
from pathlib import Path, PurePath
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
BinaryIO,
|
|
Iterator,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Union,
|
|
cast,
|
|
)
|
|
from urllib.parse import urlparse
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
from langchain_community.document_loaders.blob_loaders import Blob
|
|
from langchain_community.document_loaders.dedoc import DedocBaseLoader
|
|
from langchain_community.document_loaders.parsers.images import BaseImageBlobParser
|
|
from langchain_community.document_loaders.parsers.pdf import (
|
|
_DEFAULT_PAGES_DELIMITER,
|
|
AmazonTextractPDFParser,
|
|
DocumentIntelligenceParser,
|
|
PDFMinerParser,
|
|
PDFPlumberParser,
|
|
PyMuPDFParser,
|
|
PyPDFium2Parser,
|
|
PyPDFParser,
|
|
)
|
|
from langchain_community.document_loaders.unstructured import UnstructuredFileLoader
|
|
|
|
if TYPE_CHECKING:
|
|
from textractor.data.text_linearization_config import TextLinearizationConfig
|
|
|
|
logger = logging.getLogger(__file__)
|
|
|
|
|
|
class UnstructuredPDFLoader(UnstructuredFileLoader):
|
|
"""Load `PDF` files using `Unstructured`.
|
|
|
|
You can run the loader in one of two modes: "single" and "elements".
|
|
If you use "single" mode, the document will be returned as a single
|
|
langchain Document object. If you use "elements" mode, the unstructured
|
|
library will split the document into elements such as Title and NarrativeText.
|
|
You can pass in additional unstructured kwargs after mode to apply
|
|
different unstructured settings.
|
|
|
|
Examples
|
|
--------
|
|
from langchain_community.document_loaders import UnstructuredPDFLoader
|
|
|
|
loader = UnstructuredPDFLoader(
|
|
"example.pdf", mode="elements", strategy="fast",
|
|
)
|
|
docs = loader.load()
|
|
|
|
References
|
|
----------
|
|
https://unstructured-io.github.io/unstructured/bricks.html#partition-pdf
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, Path],
|
|
mode: str = "single",
|
|
**unstructured_kwargs: Any,
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
file_path: The path to the PDF file to load.
|
|
mode: The mode to use when loading the file. Can be one of "single",
|
|
"multi", or "all". Default is "single".
|
|
**unstructured_kwargs: Any kwargs to pass to the unstructured.
|
|
"""
|
|
file_path = str(file_path)
|
|
super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
|
|
|
|
def _get_elements(self) -> list:
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
return partition_pdf(filename=self.file_path, **self.unstructured_kwargs) # type: ignore[arg-type]
|
|
|
|
|
|
class BasePDFLoader(BaseLoader, ABC):
|
|
"""Base Loader class for `PDF` files.
|
|
|
|
If the file is a web path, it will download it to a temporary file, use it, then
|
|
clean up the temporary file after completion.
|
|
"""
|
|
|
|
def __init__(
|
|
self, file_path: Union[str, PurePath], *, headers: Optional[dict] = None
|
|
):
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: Either a local, S3 or web path to a PDF file.
|
|
headers: Headers to use for GET request to download a file from a web path.
|
|
"""
|
|
self.file_path = str(file_path)
|
|
self.web_path = None
|
|
self.headers = headers
|
|
if "~" in self.file_path:
|
|
self.file_path = os.path.expanduser(self.file_path)
|
|
|
|
# If the file is a web path or S3, download it to a temporary file,
|
|
# and use that. It's better to use a BlobLoader.
|
|
if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path):
|
|
self.temp_dir = tempfile.TemporaryDirectory()
|
|
_, suffix = os.path.splitext(self.file_path)
|
|
if self._is_s3_presigned_url(self.file_path):
|
|
suffix = urlparse(self.file_path).path.split("/")[-1]
|
|
temp_pdf = os.path.join(self.temp_dir.name, f"tmp{suffix}")
|
|
self.web_path = self.file_path
|
|
if not self._is_s3_url(self.file_path):
|
|
r = requests.get(self.file_path, headers=self.headers)
|
|
if r.status_code != 200:
|
|
raise ValueError(
|
|
"Check the url of your file; returned status code %s"
|
|
% r.status_code
|
|
)
|
|
|
|
with open(temp_pdf, mode="wb") as f:
|
|
f.write(r.content)
|
|
self.file_path = str(temp_pdf)
|
|
elif not os.path.isfile(self.file_path):
|
|
raise ValueError("File path %s is not a valid file or url" % self.file_path)
|
|
|
|
def __del__(self) -> None:
|
|
if hasattr(self, "temp_dir"):
|
|
self.temp_dir.cleanup()
|
|
|
|
@staticmethod
|
|
def _is_valid_url(url: str) -> bool:
|
|
"""Check if the url is valid."""
|
|
parsed = urlparse(url)
|
|
return bool(parsed.netloc) and bool(parsed.scheme)
|
|
|
|
@staticmethod
|
|
def _is_s3_url(url: str) -> bool:
|
|
"""check if the url is S3"""
|
|
try:
|
|
result = urlparse(url)
|
|
if result.scheme == "s3" and result.netloc:
|
|
return True
|
|
return False
|
|
except ValueError:
|
|
return False
|
|
|
|
@staticmethod
|
|
def _is_s3_presigned_url(url: str) -> bool:
|
|
"""Check if the url is a presigned S3 url."""
|
|
try:
|
|
result = urlparse(url)
|
|
return bool(re.search(r"\.s3\.amazonaws\.com$", result.netloc))
|
|
except ValueError:
|
|
return False
|
|
|
|
@property
|
|
def source(self) -> str:
|
|
return self.web_path if self.web_path is not None else self.file_path
|
|
|
|
|
|
class OnlinePDFLoader(BasePDFLoader):
|
|
"""Load online `PDF`."""
|
|
|
|
def load(self) -> list[Document]:
|
|
"""Load documents."""
|
|
loader = UnstructuredPDFLoader(str(self.file_path))
|
|
return loader.load()
|
|
|
|
|
|
class PyPDFLoader(BasePDFLoader):
|
|
"""Load and parse a PDF file using 'pypdf' library.
|
|
|
|
This class provides methods to load and parse PDF documents, supporting various
|
|
configurations such as handling password-protected files, extracting images, and
|
|
defining extraction mode. It integrates the `pypdf` library for PDF processing and
|
|
offers both synchronous and asynchronous document loading.
|
|
|
|
Examples:
|
|
Setup:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community pypdf
|
|
|
|
Instantiate the loader:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import PyPDFLoader
|
|
|
|
loader = PyPDFLoader(
|
|
file_path = "./example_data/layout-parser-paper.pdf",
|
|
# headers = None
|
|
# password = None,
|
|
mode = "single",
|
|
pages_delimiter = "\n\f",
|
|
# extract_images = True,
|
|
# images_parser = RapidOCRBlobParser(),
|
|
)
|
|
|
|
Lazy load documents:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = []
|
|
docs_lazy = loader.lazy_load()
|
|
|
|
for doc in docs_lazy:
|
|
docs.append(doc)
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
Load documents asynchronously:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = await loader.aload()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
password: Optional[Union[str, bytes]] = None,
|
|
headers: Optional[dict] = None,
|
|
extract_images: bool = False,
|
|
*,
|
|
mode: Literal["single", "page"] = "page",
|
|
images_parser: Optional[BaseImageBlobParser] = None,
|
|
images_inner_format: Literal["text", "markdown-img", "html-img"] = "text",
|
|
pages_delimiter: str = _DEFAULT_PAGES_DELIMITER,
|
|
extraction_mode: Literal["plain", "layout"] = "plain",
|
|
extraction_kwargs: Optional[dict] = None,
|
|
) -> None:
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the PDF file to be loaded.
|
|
headers: Optional headers to use for GET request to download a file from a
|
|
web path.
|
|
password: Optional password for opening encrypted PDFs.
|
|
mode: The extraction mode, either "single" for the entire document or "page"
|
|
for page-wise extraction.
|
|
pages_delimiter: A string delimiter to separate pages in single-mode
|
|
extraction.
|
|
extract_images: Whether to extract images from the PDF.
|
|
images_parser: Optional image blob parser.
|
|
images_inner_format: The format for the parsed output.
|
|
- "text" = return the content as is
|
|
- "markdown-img" = wrap the content into an image markdown link, w/ link
|
|
pointing to (`![body)(#)`]
|
|
- "html-img" = wrap the content as the `alt` text of an tag and link to
|
|
(`<img alt="{body}" src="#"/>`)
|
|
extraction_mode: “plain” for legacy functionality, “layout” extract text
|
|
in a fixed width format that closely adheres to the rendered layout in
|
|
the source pdf
|
|
extraction_kwargs: Optional additional parameters for the extraction
|
|
process.
|
|
|
|
Returns:
|
|
This method does not directly return data. Use the `load`, `lazy_load` or
|
|
`aload` methods to retrieve parsed documents with content and metadata.
|
|
"""
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PyPDFParser(
|
|
password=password,
|
|
mode=mode,
|
|
extract_images=extract_images,
|
|
images_parser=images_parser,
|
|
images_inner_format=images_inner_format,
|
|
pages_delimiter=pages_delimiter,
|
|
extraction_mode=extraction_mode,
|
|
extraction_kwargs=extraction_kwargs,
|
|
)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""
|
|
Lazy load given path as pages.
|
|
Insert image, if possible, between two paragraphs.
|
|
In this way, a paragraph can be continued on the next page.
|
|
"""
|
|
if self.web_path:
|
|
blob = Blob.from_data( # type: ignore[attr-defined]
|
|
open(self.file_path, "rb").read(), path=self.web_path
|
|
)
|
|
else:
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
yield from self.parser.lazy_parse(blob)
|
|
|
|
|
|
class PyPDFium2Loader(BasePDFLoader):
|
|
"""Load and parse a PDF file using the `pypdfium2` library.
|
|
|
|
This class provides methods to load and parse PDF documents, supporting various
|
|
configurations such as handling password-protected files, extracting images, and
|
|
defining extraction mode.
|
|
It integrates the `pypdfium2` library for PDF processing and offers both
|
|
synchronous and asynchronous document loading.
|
|
|
|
Examples:
|
|
Setup:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community pypdfium2
|
|
|
|
Instantiate the loader:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import PyPDFium2Loader
|
|
|
|
loader = PyPDFium2Loader(
|
|
file_path = "./example_data/layout-parser-paper.pdf",
|
|
# headers = None
|
|
# password = None,
|
|
mode = "single",
|
|
pages_delimiter = "\n\f",
|
|
# extract_images = True,
|
|
# images_to_text = convert_images_to_text_with_tesseract(),
|
|
)
|
|
|
|
Lazy load documents:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = []
|
|
docs_lazy = loader.lazy_load()
|
|
|
|
for doc in docs_lazy:
|
|
docs.append(doc)
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
Load documents asynchronously:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = await loader.aload()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
*,
|
|
mode: Literal["single", "page"] = "page",
|
|
pages_delimiter: str = _DEFAULT_PAGES_DELIMITER,
|
|
password: Optional[str] = None,
|
|
extract_images: bool = False,
|
|
images_parser: Optional[BaseImageBlobParser] = None,
|
|
images_inner_format: Literal["text", "markdown-img", "html-img"] = "text",
|
|
headers: Optional[dict] = None,
|
|
):
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the PDF file to be loaded.
|
|
headers: Optional headers to use for GET request to download a file from a
|
|
web path.
|
|
password: Optional password for opening encrypted PDFs.
|
|
mode: The extraction mode, either "single" for the entire document or "page"
|
|
for page-wise extraction.
|
|
pages_delimiter: A string delimiter to separate pages in single-mode
|
|
extraction.
|
|
extract_images: Whether to extract images from the PDF.
|
|
images_parser: Optional image blob parser.
|
|
images_inner_format: The format for the parsed output.
|
|
- "text" = return the content as is
|
|
- "markdown-img" = wrap the content into an image markdown link, w/ link
|
|
pointing to (`![body)(#)`]
|
|
- "html-img" = wrap the content as the `alt` text of an tag and link to
|
|
(`<img alt="{body}" src="#"/>`)
|
|
|
|
Returns:
|
|
This class does not directly return data. Use the `load`, `lazy_load` or
|
|
`aload` methods to retrieve parsed documents with content and metadata.
|
|
"""
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PyPDFium2Parser(
|
|
mode=mode,
|
|
password=password,
|
|
extract_images=extract_images,
|
|
images_parser=images_parser,
|
|
images_inner_format=images_inner_format,
|
|
pages_delimiter=pages_delimiter,
|
|
)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""
|
|
Lazy load given path as pages.
|
|
Insert image, if possible, between two paragraphs.
|
|
In this way, a paragraph can be continued on the next page.
|
|
"""
|
|
if self.web_path:
|
|
blob = Blob.from_data( # type: ignore[attr-defined]
|
|
open(self.file_path, "rb").read(), path=self.web_path
|
|
)
|
|
else:
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
yield from self.parser.parse(blob)
|
|
|
|
|
|
class PyPDFDirectoryLoader(BaseLoader):
|
|
"""Load and parse a directory of PDF files using 'pypdf' library.
|
|
|
|
This class provides methods to load and parse multiple PDF documents in a directory,
|
|
supporting options for recursive search, handling password-protected files,
|
|
extracting images, and defining extraction modes. It integrates the `pypdf` library
|
|
for PDF processing and offers synchronous document loading.
|
|
|
|
Examples:
|
|
Setup:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community pypdf
|
|
|
|
Instantiate the loader:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
|
|
|
loader = PyPDFDirectoryLoader(
|
|
path = "./example_data/",
|
|
glob = "**/[!.]*.pdf",
|
|
silent_errors = False,
|
|
load_hidden = False,
|
|
recursive = False,
|
|
extract_images = False,
|
|
password = None,
|
|
mode = "page",
|
|
images_to_text = None,
|
|
headers = None,
|
|
extraction_mode = "plain",
|
|
# extraction_kwargs = None,
|
|
)
|
|
|
|
Load documents:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = loader.load()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
Load documents asynchronously:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = await loader.aload()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, PurePath],
|
|
glob: str = "**/[!.]*.pdf",
|
|
silent_errors: bool = False,
|
|
load_hidden: bool = False,
|
|
recursive: bool = False,
|
|
extract_images: bool = False,
|
|
*,
|
|
password: Optional[str] = None,
|
|
mode: Literal["single", "page"] = "page",
|
|
images_parser: Optional[BaseImageBlobParser] = None,
|
|
headers: Optional[dict] = None,
|
|
extraction_mode: Literal["plain", "layout"] = "plain",
|
|
extraction_kwargs: Optional[dict] = None,
|
|
):
|
|
"""Initialize with a directory path.
|
|
|
|
Args:
|
|
path: The path to the directory containing PDF files to be loaded.
|
|
glob: The glob pattern to match files in the directory.
|
|
silent_errors: Whether to log errors instead of raising them.
|
|
load_hidden: Whether to include hidden files in the search.
|
|
recursive: Whether to search subdirectories recursively.
|
|
extract_images: Whether to extract images from PDFs.
|
|
password: Optional password for opening encrypted PDFs.
|
|
mode: The extraction mode, either "single" for extracting the entire
|
|
document or "page" for page-wise extraction.
|
|
images_parser: Optional image blob parser..
|
|
headers: Optional headers to use for GET request to download a file from a
|
|
web path.
|
|
extraction_mode: “plain” for legacy functionality, “layout” for
|
|
experimental layout mode functionality
|
|
extraction_kwargs: Optional additional parameters for the extraction
|
|
process.
|
|
|
|
Returns:
|
|
This method does not directly return data. Use the `load` method to
|
|
retrieve parsed documents with content and metadata.
|
|
"""
|
|
self.password = password
|
|
self.mode = mode
|
|
self.path = path
|
|
self.glob = glob
|
|
self.load_hidden = load_hidden
|
|
self.recursive = recursive
|
|
self.silent_errors = silent_errors
|
|
self.extract_images = extract_images
|
|
self.images_parser = images_parser
|
|
self.headers = headers
|
|
self.extraction_mode = extraction_mode
|
|
self.extraction_kwargs = extraction_kwargs
|
|
|
|
@staticmethod
|
|
def _is_visible(path: PurePath) -> bool:
|
|
return not any(part.startswith(".") for part in path.parts)
|
|
|
|
def load(self) -> list[Document]:
|
|
p = Path(self.path)
|
|
docs = []
|
|
items = p.rglob(self.glob) if self.recursive else p.glob(self.glob)
|
|
for i in items:
|
|
if i.is_file():
|
|
if self._is_visible(i.relative_to(p)) or self.load_hidden:
|
|
try:
|
|
loader = PyPDFLoader(
|
|
str(i),
|
|
password=self.password,
|
|
mode=self.mode,
|
|
extract_images=self.extract_images,
|
|
images_parser=self.images_parser,
|
|
headers=self.headers,
|
|
extraction_mode=self.extraction_mode,
|
|
extraction_kwargs=self.extraction_kwargs,
|
|
)
|
|
sub_docs = loader.load()
|
|
for doc in sub_docs:
|
|
doc.metadata["source"] = str(i)
|
|
docs.extend(sub_docs)
|
|
except Exception as e:
|
|
if self.silent_errors:
|
|
logger.warning(e)
|
|
else:
|
|
raise e
|
|
return docs
|
|
|
|
|
|
class PDFMinerLoader(BasePDFLoader):
|
|
"""Load and parse a PDF file using 'pdfminer.six' library.
|
|
|
|
This class provides methods to load and parse PDF documents, supporting various
|
|
configurations such as handling password-protected files, extracting images, and
|
|
defining extraction mode. It integrates the `pdfminer.six` library for PDF
|
|
processing and offers both synchronous and asynchronous document loading.
|
|
|
|
Examples:
|
|
Setup:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community pdfminer.six
|
|
|
|
Instantiate the loader:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import PDFMinerLoader
|
|
|
|
loader = PDFMinerLoader(
|
|
file_path = "./example_data/layout-parser-paper.pdf",
|
|
# headers = None
|
|
# password = None,
|
|
mode = "single",
|
|
pages_delimiter = "\n\f",
|
|
# extract_images = True,
|
|
# images_to_text = convert_images_to_text_with_tesseract(),
|
|
)
|
|
|
|
Lazy load documents:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = []
|
|
docs_lazy = loader.lazy_load()
|
|
|
|
for doc in docs_lazy:
|
|
docs.append(doc)
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
Load documents asynchronously:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = await loader.aload()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
*,
|
|
password: Optional[str] = None,
|
|
mode: Literal["single", "page"] = "single",
|
|
pages_delimiter: str = _DEFAULT_PAGES_DELIMITER,
|
|
extract_images: bool = False,
|
|
images_parser: Optional[BaseImageBlobParser] = None,
|
|
images_inner_format: Literal["text", "markdown-img", "html-img"] = "text",
|
|
headers: Optional[dict] = None,
|
|
concatenate_pages: Optional[bool] = None,
|
|
) -> None:
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the PDF file to be loaded.
|
|
headers: Optional headers to use for GET request to download a file from a
|
|
web path.
|
|
password: Optional password for opening encrypted PDFs.
|
|
mode: The extraction mode, either "single" for the entire document or "page"
|
|
for page-wise extraction.
|
|
pages_delimiter: A string delimiter to separate pages in single-mode
|
|
extraction.
|
|
extract_images: Whether to extract images from the PDF.
|
|
images_parser: Optional image blob parser.
|
|
images_inner_format: The format for the parsed output.
|
|
- "text" = return the content as is
|
|
- "markdown-img" = wrap the content into an image markdown link, w/ link
|
|
pointing to (`![body)(#)`]
|
|
- "html-img" = wrap the content as the `alt` text of an tag and link to
|
|
(`<img alt="{body}" src="#"/>`)
|
|
concatenate_pages: Deprecated. If True, concatenate all PDF pages into one
|
|
a single document. Otherwise, return one document per page.
|
|
|
|
Returns:
|
|
This method does not directly return data. Use the `load`, `lazy_load` or
|
|
`aload` methods to retrieve parsed documents with content and metadata.
|
|
"""
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PDFMinerParser(
|
|
password=password,
|
|
extract_images=extract_images,
|
|
images_parser=images_parser,
|
|
concatenate_pages=concatenate_pages,
|
|
mode=mode,
|
|
pages_delimiter=pages_delimiter,
|
|
images_inner_format=images_inner_format,
|
|
)
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""
|
|
Lazy load given path as pages.
|
|
Insert image, if possible, between two paragraphs.
|
|
In this way, a paragraph can be continued on the next page.
|
|
"""
|
|
if self.web_path:
|
|
blob = Blob.from_data( # type: ignore[attr-defined]
|
|
open(self.file_path, "rb").read(), path=self.web_path
|
|
)
|
|
else:
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
yield from self.parser.lazy_parse(blob)
|
|
|
|
|
|
class PDFMinerPDFasHTMLLoader(BasePDFLoader):
|
|
"""Load `PDF` files as HTML content using `PDFMiner`."""
|
|
|
|
def __init__(
|
|
self, file_path: Union[str, PurePath], *, headers: Optional[dict] = None
|
|
):
|
|
"""Initialize with a file path."""
|
|
try:
|
|
from pdfminer.high_level import extract_text_to_fp # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"`pdfminer` package not found, please install it with "
|
|
"`pip install pdfminer.six`"
|
|
)
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
"""Load file."""
|
|
from pdfminer.high_level import extract_text_to_fp
|
|
from pdfminer.layout import LAParams
|
|
from pdfminer.utils import open_filename
|
|
|
|
output_string = StringIO()
|
|
with open_filename(self.file_path, "rb") as fp:
|
|
extract_text_to_fp(
|
|
cast(BinaryIO, fp),
|
|
output_string,
|
|
codec="",
|
|
laparams=LAParams(),
|
|
output_type="html",
|
|
)
|
|
metadata = {
|
|
"source": str(self.file_path) if self.web_path is None else self.web_path
|
|
}
|
|
yield Document(page_content=output_string.getvalue(), metadata=metadata)
|
|
|
|
|
|
class PyMuPDFLoader(BasePDFLoader):
|
|
"""Load and parse a PDF file using 'PyMuPDF' library.
|
|
|
|
This class provides methods to load and parse PDF documents, supporting various
|
|
configurations such as handling password-protected files, extracting tables,
|
|
extracting images, and defining extraction mode. It integrates the `PyMuPDF`
|
|
library for PDF processing and offers both synchronous and asynchronous document
|
|
loading.
|
|
|
|
Examples:
|
|
Setup:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community pymupdf
|
|
|
|
Instantiate the loader:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import PyMuPDFLoader
|
|
|
|
loader = PyMuPDFLoader(
|
|
file_path = "./example_data/layout-parser-paper.pdf",
|
|
# headers = None
|
|
# password = None,
|
|
mode = "single",
|
|
pages_delimiter = "\n\f",
|
|
# extract_images = True,
|
|
# images_parser = TesseractBlobParser(),
|
|
# extract_tables = "markdown",
|
|
# extract_tables_settings = None,
|
|
)
|
|
|
|
Lazy load documents:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = []
|
|
docs_lazy = loader.lazy_load()
|
|
|
|
for doc in docs_lazy:
|
|
docs.append(doc)
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
Load documents asynchronously:
|
|
|
|
.. code-block:: python
|
|
|
|
docs = await loader.aload()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
*,
|
|
password: Optional[str] = None,
|
|
mode: Literal["single", "page"] = "page",
|
|
pages_delimiter: str = _DEFAULT_PAGES_DELIMITER,
|
|
extract_images: bool = False,
|
|
images_parser: Optional[BaseImageBlobParser] = None,
|
|
images_inner_format: Literal["text", "markdown-img", "html-img"] = "text",
|
|
extract_tables: Union[Literal["csv", "markdown", "html"], None] = None,
|
|
headers: Optional[dict] = None,
|
|
extract_tables_settings: Optional[dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: The path to the PDF file to be loaded.
|
|
headers: Optional headers to use for GET request to download a file from a
|
|
web path.
|
|
password: Optional password for opening encrypted PDFs.
|
|
mode: The extraction mode, either "single" for the entire document or "page"
|
|
for page-wise extraction.
|
|
pages_delimiter: A string delimiter to separate pages in single-mode
|
|
extraction.
|
|
extract_images: Whether to extract images from the PDF.
|
|
images_parser: Optional image blob parser.
|
|
images_inner_format: The format for the parsed output.
|
|
- "text" = return the content as is
|
|
- "markdown-img" = wrap the content into an image markdown link, w/ link
|
|
pointing to (`![body)(#)`]
|
|
- "html-img" = wrap the content as the `alt` text of an tag and link to
|
|
(`<img alt="{body}" src="#"/>`)
|
|
extract_tables: Whether to extract tables in a specific format, such as
|
|
"csv", "markdown", or "html".
|
|
extract_tables_settings: Optional dictionary of settings for customizing
|
|
table extraction.
|
|
**kwargs: Additional keyword arguments for customizing text extraction
|
|
behavior.
|
|
|
|
Returns:
|
|
This method does not directly return data. Use the `load`, `lazy_load`, or
|
|
`aload` methods to retrieve parsed documents with content and metadata.
|
|
|
|
Raises:
|
|
ValueError: If the `mode` argument is not one of "single" or "page".
|
|
"""
|
|
if mode not in ["single", "page"]:
|
|
raise ValueError("mode must be single or page")
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = PyMuPDFParser(
|
|
password=password,
|
|
mode=mode,
|
|
pages_delimiter=pages_delimiter,
|
|
text_kwargs=kwargs,
|
|
extract_images=extract_images,
|
|
images_parser=images_parser,
|
|
images_inner_format=images_inner_format,
|
|
extract_tables=extract_tables,
|
|
extract_tables_settings=extract_tables_settings,
|
|
)
|
|
|
|
def _lazy_load(self, **kwargs: Any) -> Iterator[Document]:
|
|
"""Lazy load given path as pages or single document (see `mode`).
|
|
Insert image, if possible, between two paragraphs.
|
|
In this way, a paragraph can be continued on the next page.
|
|
"""
|
|
if kwargs:
|
|
logger.warning(
|
|
f"Received runtime arguments {kwargs}. Passing runtime args to `load`"
|
|
f" is deprecated. Please pass arguments during initialization instead."
|
|
)
|
|
parser = self.parser
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined]
|
|
else:
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
yield from parser._lazy_parse(blob, text_kwargs=kwargs)
|
|
|
|
def load(self, **kwargs: Any) -> list[Document]:
|
|
return list(self._lazy_load(**kwargs))
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
yield from self._lazy_load()
|
|
|
|
|
|
# MathpixPDFLoader implementation taken largely from Daniel Gross's:
|
|
# https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
|
|
class MathpixPDFLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `Mathpix` service."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
processed_file_format: str = "md",
|
|
max_wait_time_seconds: int = 500,
|
|
should_clean_pdf: bool = False,
|
|
extra_request_data: Optional[dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Initialize with a file path.
|
|
|
|
Args:
|
|
file_path: a file for loading.
|
|
processed_file_format: a format of the processed file. Default is "md".
|
|
max_wait_time_seconds: a maximum time to wait for the response from
|
|
the server. Default is 500.
|
|
should_clean_pdf: a flag to clean the PDF file. Default is False.
|
|
extra_request_data: Additional request data.
|
|
**kwargs: additional keyword arguments.
|
|
"""
|
|
self.mathpix_api_key = get_from_dict_or_env(
|
|
kwargs, "mathpix_api_key", "MATHPIX_API_KEY"
|
|
)
|
|
self.mathpix_api_id = get_from_dict_or_env(
|
|
kwargs, "mathpix_api_id", "MATHPIX_API_ID"
|
|
)
|
|
|
|
# The base class isn't expecting these and doesn't collect **kwargs
|
|
kwargs.pop("mathpix_api_key", None)
|
|
kwargs.pop("mathpix_api_id", None)
|
|
|
|
super().__init__(file_path, **kwargs)
|
|
self.processed_file_format = processed_file_format
|
|
self.extra_request_data = (
|
|
extra_request_data if extra_request_data is not None else {}
|
|
)
|
|
self.max_wait_time_seconds = max_wait_time_seconds
|
|
self.should_clean_pdf = should_clean_pdf
|
|
|
|
@property
|
|
def _mathpix_headers(self) -> dict[str, str]:
|
|
return {"app_id": self.mathpix_api_id, "app_key": self.mathpix_api_key}
|
|
|
|
@property
|
|
def url(self) -> str:
|
|
return "https://api.mathpix.com/v3/pdf"
|
|
|
|
@property
|
|
def data(self) -> dict:
|
|
options = {
|
|
"conversion_formats": {self.processed_file_format: True},
|
|
**self.extra_request_data,
|
|
}
|
|
return {"options_json": json.dumps(options)}
|
|
|
|
def send_pdf(self) -> str:
|
|
with open(str(self.file_path), "rb") as f:
|
|
files = {"file": f}
|
|
response = requests.post(
|
|
self.url, headers=self._mathpix_headers, files=files, data=self.data
|
|
)
|
|
response_data = response.json()
|
|
if "error" in response_data:
|
|
raise ValueError(f"Mathpix request failed: {response_data['error']}")
|
|
if "pdf_id" in response_data:
|
|
pdf_id = response_data["pdf_id"]
|
|
return pdf_id
|
|
else:
|
|
raise ValueError("Unable to send PDF to Mathpix.")
|
|
|
|
def wait_for_processing(self, pdf_id: str) -> None:
|
|
"""Wait for processing to complete.
|
|
|
|
Args:
|
|
pdf_id: a PDF id.
|
|
|
|
Returns: None
|
|
"""
|
|
url = self.url + "/" + pdf_id
|
|
for _ in range(0, self.max_wait_time_seconds, 5):
|
|
response = requests.get(url, headers=self._mathpix_headers)
|
|
response_data = response.json()
|
|
|
|
# This indicates an error with the request (e.g. auth problems)
|
|
error = response_data.get("error", None)
|
|
error_info = response_data.get("error_info", None)
|
|
|
|
if error is not None:
|
|
error_msg = f"Unable to retrieve PDF from Mathpix: {error}"
|
|
|
|
if error_info is not None:
|
|
error_msg += f" ({error_info['id']})"
|
|
|
|
raise ValueError(error_msg)
|
|
|
|
status = response_data.get("status", None)
|
|
|
|
if status == "completed":
|
|
return
|
|
elif status == "error":
|
|
# This indicates an error with the PDF processing
|
|
raise ValueError("Unable to retrieve PDF from Mathpix")
|
|
else:
|
|
logger.info("Status: %s, waiting for processing to complete", status)
|
|
time.sleep(5)
|
|
raise TimeoutError
|
|
|
|
def get_processed_pdf(self, pdf_id: str) -> str:
|
|
self.wait_for_processing(pdf_id)
|
|
url = f"{self.url}/{pdf_id}.{self.processed_file_format}"
|
|
response = requests.get(url, headers=self._mathpix_headers)
|
|
return response.content.decode("utf-8")
|
|
|
|
def clean_pdf(self, contents: str) -> str:
|
|
"""Clean the PDF file.
|
|
|
|
Args:
|
|
contents: a PDF file contents.
|
|
|
|
Returns:
|
|
|
|
"""
|
|
contents = "\n".join(
|
|
[line for line in contents.split("\n") if not line.startswith("![]")]
|
|
)
|
|
# replace \section{Title} with # Title
|
|
contents = contents.replace("\\section{", "# ").replace("}", "")
|
|
# replace the "\" slash that Mathpix adds to escape $, %, (, etc.
|
|
contents = (
|
|
contents.replace(r"\$", "$")
|
|
.replace(r"\%", "%")
|
|
.replace(r"\(", "(")
|
|
.replace(r"\)", ")")
|
|
)
|
|
return contents
|
|
|
|
def load(self) -> list[Document]:
|
|
pdf_id = self.send_pdf()
|
|
contents = self.get_processed_pdf(pdf_id)
|
|
if self.should_clean_pdf:
|
|
contents = self.clean_pdf(contents)
|
|
metadata = {"source": self.source, "file_path": self.source, "pdf_id": pdf_id}
|
|
return [Document(page_content=contents, metadata=metadata)]
|
|
|
|
|
|
class PDFPlumberLoader(BasePDFLoader):
|
|
"""Load `PDF` files using `pdfplumber`."""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
text_kwargs: Optional[Mapping[str, Any]] = None,
|
|
dedupe: bool = False,
|
|
headers: Optional[dict] = None,
|
|
extract_images: bool = False,
|
|
) -> None:
|
|
"""Initialize with a file path."""
|
|
try:
|
|
import pdfplumber # noqa:F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pdfplumber package not found, please install it with "
|
|
"`pip install pdfplumber`"
|
|
)
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
self.text_kwargs = text_kwargs or {}
|
|
self.dedupe = dedupe
|
|
self.extract_images = extract_images
|
|
|
|
def load(self) -> list[Document]:
|
|
"""Load file."""
|
|
|
|
parser = PDFPlumberParser(
|
|
text_kwargs=self.text_kwargs,
|
|
dedupe=self.dedupe,
|
|
extract_images=self.extract_images,
|
|
)
|
|
if self.web_path:
|
|
blob = Blob.from_data(open(self.file_path, "rb").read(), path=self.web_path) # type: ignore[attr-defined]
|
|
else:
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
return parser.parse(blob)
|
|
|
|
|
|
class AmazonTextractPDFLoader(BasePDFLoader):
|
|
"""Load `PDF` files from a local file system, HTTP or S3.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Amazon Textract service.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
from langchain_community.document_loaders import AmazonTextractPDFLoader
|
|
loader = AmazonTextractPDFLoader(
|
|
file_path="s3://pdfs/myfile.pdf"
|
|
)
|
|
document = loader.load()
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
textract_features: Optional[Sequence[str]] = None,
|
|
client: Optional[Any] = None,
|
|
credentials_profile_name: Optional[str] = None,
|
|
region_name: Optional[str] = None,
|
|
endpoint_url: Optional[str] = None,
|
|
headers: Optional[dict] = None,
|
|
*,
|
|
linearization_config: Optional["TextLinearizationConfig"] = None,
|
|
) -> None:
|
|
"""Initialize the loader.
|
|
|
|
Args:
|
|
file_path: A file, url or s3 path for input file
|
|
textract_features: Features to be used for extraction, each feature
|
|
should be passed as a str that conforms to the enum
|
|
`Textract_Features`, see `amazon-textract-caller` pkg
|
|
client: boto3 textract client (Optional)
|
|
credentials_profile_name: AWS profile name, if not default (Optional)
|
|
region_name: AWS region, eg us-east-1 (Optional)
|
|
endpoint_url: endpoint url for the textract service (Optional)
|
|
linearization_config: Config to be used for linearization of the output
|
|
should be an instance of TextLinearizationConfig from
|
|
the `textractor` pkg
|
|
"""
|
|
super().__init__(file_path, headers=headers)
|
|
|
|
try:
|
|
import textractcaller as tc
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import amazon-textract-caller python package. "
|
|
"Please install it with `pip install amazon-textract-caller`."
|
|
)
|
|
if textract_features:
|
|
features = [tc.Textract_Features[x] for x in textract_features]
|
|
else:
|
|
features = []
|
|
|
|
if credentials_profile_name or region_name or endpoint_url:
|
|
try:
|
|
import boto3
|
|
|
|
if credentials_profile_name is not None:
|
|
session = boto3.Session(profile_name=credentials_profile_name)
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
client_params = {}
|
|
if region_name:
|
|
client_params["region_name"] = region_name
|
|
if endpoint_url:
|
|
client_params["endpoint_url"] = endpoint_url
|
|
|
|
client = session.client("textract", **client_params)
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
f"profile name are valid. {e}"
|
|
) from e
|
|
self.parser = AmazonTextractPDFParser(
|
|
textract_features=features,
|
|
client=client,
|
|
linearization_config=linearization_config,
|
|
)
|
|
|
|
def load(self) -> list[Document]:
|
|
"""Load given path as pages."""
|
|
return list(self.lazy_load())
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load documents"""
|
|
# the self.file_path is local, but the blob has to include
|
|
# the S3 location if the file originated from S3 for multipage documents
|
|
# raises ValueError when multipage and not on S3"""
|
|
|
|
if self.web_path and self._is_s3_url(self.web_path):
|
|
blob = Blob(path=self.web_path) # type: ignore[call-arg] # type: ignore[misc]
|
|
else:
|
|
blob = Blob.from_path(self.file_path)
|
|
if AmazonTextractPDFLoader._get_number_of_pages(blob) > 1:
|
|
raise ValueError(
|
|
f"the file {blob.path} is a multi-page document, \
|
|
but not stored on S3. \
|
|
Textract requires multi-page documents to be on S3."
|
|
)
|
|
|
|
yield from self.parser.parse(blob)
|
|
|
|
@staticmethod
|
|
def _get_number_of_pages(blob: Blob) -> int: # type: ignore[valid-type]
|
|
try:
|
|
import pypdf
|
|
from PIL import Image, ImageSequence
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import pypdf or Pilloe python package. "
|
|
"Please install it with `pip install pypdf Pillow`."
|
|
)
|
|
if blob.mimetype == "application/pdf": # type: ignore[attr-defined]
|
|
with blob.as_bytes_io() as input_pdf_file: # type: ignore[attr-defined]
|
|
pdf_reader = pypdf.PdfReader(input_pdf_file)
|
|
return len(pdf_reader.pages)
|
|
elif blob.mimetype == "image/tiff": # type: ignore[attr-defined]
|
|
num_pages = 0
|
|
img = Image.open(blob.as_bytes()) # type: ignore[attr-defined]
|
|
for _, _ in enumerate(ImageSequence.Iterator(img)):
|
|
num_pages += 1
|
|
return num_pages
|
|
elif blob.mimetype in ["image/png", "image/jpeg"]: # type: ignore[attr-defined]
|
|
return 1
|
|
else:
|
|
raise ValueError( # type: ignore[attr-defined]
|
|
f"unsupported mime type: {blob.mimetype}"
|
|
)
|
|
|
|
|
|
class DedocPDFLoader(DedocBaseLoader):
|
|
"""DedocPDFLoader document loader integration to load PDF files using `dedoc`.
|
|
The file loader can automatically detect the correctness of a textual layer in the
|
|
PDF document.
|
|
Note that `__init__` method supports parameters that differ from ones of
|
|
DedocBaseLoader.
|
|
|
|
Setup:
|
|
Install ``dedoc`` package.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U dedoc
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.document_loaders import DedocPDFLoader
|
|
|
|
loader = DedocPDFLoader(
|
|
file_path="example.pdf",
|
|
# split=...,
|
|
# with_tables=...,
|
|
# pdf_with_text_layer=...,
|
|
# pages=...,
|
|
# ...
|
|
)
|
|
|
|
Load:
|
|
.. code-block:: python
|
|
|
|
docs = loader.load()
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
.. code-block:: python
|
|
|
|
Some text
|
|
{
|
|
'file_name': 'example.pdf',
|
|
'file_type': 'application/pdf',
|
|
# ...
|
|
}
|
|
|
|
Lazy load:
|
|
.. code-block:: python
|
|
|
|
docs = []
|
|
docs_lazy = loader.lazy_load()
|
|
|
|
for doc in docs_lazy:
|
|
docs.append(doc)
|
|
print(docs[0].page_content[:100])
|
|
print(docs[0].metadata)
|
|
|
|
.. code-block:: python
|
|
|
|
Some text
|
|
{
|
|
'file_name': 'example.pdf',
|
|
'file_type': 'application/pdf',
|
|
# ...
|
|
}
|
|
|
|
Parameters used for document parsing via `dedoc`
|
|
(https://dedoc.readthedocs.io/en/latest/parameters/pdf_handling.html):
|
|
|
|
with_attachments: enable attached files extraction
|
|
recursion_deep_attachments: recursion level for attached files extraction,
|
|
works only when with_attachments==True
|
|
pdf_with_text_layer: type of handler for parsing, available options
|
|
["true", "false", "tabby", "auto", "auto_tabby" (default)]
|
|
language: language of the document for PDF without a textual layer,
|
|
available options ["eng", "rus", "rus+eng" (default)], the list of
|
|
languages can be extended, please see
|
|
https://dedoc.readthedocs.io/en/latest/tutorials/add_new_language.html
|
|
pages: page slice to define the reading range for parsing
|
|
is_one_column_document: detect number of columns for PDF without a textual
|
|
layer, available options ["true", "false", "auto" (default)]
|
|
document_orientation: fix document orientation (90, 180, 270 degrees) for PDF
|
|
without a textual layer, available options ["auto" (default), "no_change"]
|
|
need_header_footer_analysis: remove headers and footers from the output result
|
|
need_binarization: clean pages background (binarize) for PDF without a textual
|
|
layer
|
|
need_pdf_table_analysis: parse tables for PDF without a textual layer
|
|
"""
|
|
|
|
def _make_config(self) -> dict:
|
|
from dedoc.utils.langchain import make_manager_pdf_config
|
|
|
|
return make_manager_pdf_config(
|
|
file_path=str(self.file_path),
|
|
parsing_params=self.parsing_parameters,
|
|
split=self.split,
|
|
)
|
|
|
|
|
|
class DocumentIntelligenceLoader(BasePDFLoader):
|
|
"""Load a PDF with Azure Document Intelligence"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
client: Any,
|
|
model: str = "prebuilt-document",
|
|
headers: Optional[dict] = None,
|
|
) -> None:
|
|
"""Initialize the object for file processing with Azure Document Intelligence
|
|
(formerly Form Recognizer).
|
|
|
|
This constructor initializes a DocumentIntelligenceParser object to be used
|
|
for parsing files using the Azure Document Intelligence API. The load method
|
|
generates a Document node including metadata (source blob and page number)
|
|
for each page.
|
|
|
|
Parameters:
|
|
-----------
|
|
file_path : str
|
|
The path to the file that needs to be parsed.
|
|
client: Any
|
|
A DocumentAnalysisClient to perform the analysis of the blob
|
|
model : str
|
|
The model name or ID to be used for form recognition in Azure.
|
|
|
|
Examples:
|
|
---------
|
|
>>> obj = DocumentIntelligenceLoader(
|
|
... file_path="path/to/file",
|
|
... client=client,
|
|
... model="prebuilt-document"
|
|
... )
|
|
"""
|
|
|
|
super().__init__(file_path, headers=headers)
|
|
self.parser = DocumentIntelligenceParser(client=client, model=model)
|
|
|
|
def load(self) -> list[Document]:
|
|
"""Load given path as pages."""
|
|
return list(self.lazy_load())
|
|
|
|
def lazy_load(
|
|
self,
|
|
) -> Iterator[Document]:
|
|
"""Lazy load given path as pages."""
|
|
blob = Blob.from_path(self.file_path) # type: ignore[attr-defined]
|
|
yield from self.parser.parse(blob)
|
|
|
|
|
|
class ZeroxPDFLoader(BasePDFLoader):
|
|
"""Document loader utilizing Zerox library:
|
|
https://github.com/getomni-ai/zerox
|
|
|
|
Zerox converts PDF document to series of images (page-wise) and
|
|
uses vision-capable LLM model to generate Markdown representation.
|
|
|
|
Zerox utilizes anyc operations. Therefore when using this loader
|
|
inside Jupyter Notebook (or any environment running async)
|
|
you will need to:
|
|
```python
|
|
import nest_asyncio
|
|
nest_asyncio.apply()
|
|
```
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: Union[str, PurePath],
|
|
model: str = "gpt-4o-mini",
|
|
**zerox_kwargs: Any,
|
|
) -> None:
|
|
super().__init__(file_path=file_path)
|
|
"""Initialize the parser with arguments to be passed to the zerox function.
|
|
Make sure to set necessary environment variables such as API key, endpoint, etc.
|
|
Check zerox documentation for list of necessary environment variables for
|
|
any given model.
|
|
|
|
Args:
|
|
file_path:
|
|
Path or url of the pdf file
|
|
model:
|
|
Vision capable model to use. Defaults to "gpt-4o-mini".
|
|
Hosted models are passed in format "<provider>/<model>"
|
|
Examples: "azure/gpt-4o-mini", "vertex_ai/gemini-1.5-flash-001"
|
|
See more details in zerox documentation.
|
|
**zerox_kwargs:
|
|
Arguments specific to the zerox function.
|
|
see datailed list of arguments here in zerox repository:
|
|
https://github.com/getomni-ai/zerox/blob/main/py_zerox/pyzerox/core/zerox.py#L25
|
|
""" # noqa: E501
|
|
self.zerox_kwargs = zerox_kwargs
|
|
self.model = model
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
"""Lazily load pages."""
|
|
import asyncio
|
|
|
|
from pyzerox import zerox
|
|
|
|
# Directly call asyncio.run to execute zerox synchronously
|
|
zerox_output = asyncio.run(
|
|
zerox(file_path=str(self.file_path), model=self.model, **self.zerox_kwargs)
|
|
)
|
|
|
|
# Convert zerox output to Document instances and yield them
|
|
if len(zerox_output.pages) > 0:
|
|
num_pages = zerox_output.pages[-1].page
|
|
for page in zerox_output.pages:
|
|
yield Document(
|
|
page_content=page.content,
|
|
metadata={
|
|
"source": self.source,
|
|
"page": page.page,
|
|
"num_pages": num_pages,
|
|
},
|
|
)
|
|
|
|
|
|
# Legacy: only for backwards compatibility. Use PyPDFLoader instead
|
|
PagedPDFSplitter = PyPDFLoader
|