langchain/libs/community/langchain_community/embeddings/gpt4all.py
Steve Moss 24605bcdb6
community[patch]: Fix missing protected_namespaces(). (#27610)
- [x] **PR message**:
- **Description:** Fixes warning messages raised due to missing
`protected_namespaces` parameter in `ConfigDict`.
    - **Issue:** https://github.com/langchain-ai/langchain/issues/27609
    - **Dependencies:** No dependencies
    - **Twitter handle:** @gawbul
2024-10-25 02:16:26 +00:00

77 lines
2.3 KiB
Python

from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict, model_validator
class GPT4AllEmbeddings(BaseModel, Embeddings):
"""GPT4All embedding models.
To use, you should have the gpt4all python package installed
Example:
.. code-block:: python
from langchain_community.embeddings import GPT4AllEmbeddings
model_name = "all-MiniLM-L6-v2.gguf2.f16.gguf"
gpt4all_kwargs = {'allow_download': 'True'}
embeddings = GPT4AllEmbeddings(
model_name=model_name,
gpt4all_kwargs=gpt4all_kwargs
)
"""
model_name: Optional[str] = None
n_threads: Optional[int] = None
device: Optional[str] = "cpu"
gpt4all_kwargs: Optional[dict] = {}
client: Any #: :meta private:
model_config = ConfigDict(protected_namespaces=())
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that GPT4All library is installed."""
try:
from gpt4all import Embed4All
values["client"] = Embed4All(
model_name=values.get("model_name"),
n_threads=values.get("n_threads"),
device=values.get("device"),
**(values.get("gpt4all_kwargs") or {}),
)
except ImportError:
raise ImportError(
"Could not import gpt4all library. "
"Please install the gpt4all library to "
"use this embedding model: pip install gpt4all"
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents using GPT4All.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = [self.client.embed(text) for text in texts]
return [list(map(float, e)) for e in embeddings]
def embed_query(self, text: str) -> List[float]:
"""Embed a query using GPT4All.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]