mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-02 05:45:47 +00:00
## description - I refactor `Chathunyuan` using tencentcloud sdk because I found the original one can't work in my application - I add `HunyuanEmbeddings` using tencentcloud sdk - Both of them are extend the basic class of langchain. I have fully tested them in my application ## Dependencies - tencentcloud-sdk-python --------- Co-authored-by: centonhuang <centonhuang@tencent.com> Co-authored-by: Erick Friis <erick@langchain.dev>
125 lines
4.7 KiB
Python
125 lines
4.7 KiB
Python
import json
|
|
from typing import Any, Dict, List, Literal, Optional, Type
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.runnables.config import run_in_executor
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from pydantic import BaseModel, Field, SecretStr, model_validator
|
|
|
|
|
|
class HunyuanEmbeddings(Embeddings, BaseModel):
|
|
"""Tencent Hunyuan embedding models API by Tencent.
|
|
|
|
For more information, see https://cloud.tencent.com/document/product/1729
|
|
"""
|
|
|
|
hunyuan_secret_id: Optional[SecretStr] = Field(alias="secret_id", default=None)
|
|
"""Hunyuan Secret ID"""
|
|
hunyuan_secret_key: Optional[SecretStr] = Field(alias="secret_key", default=None)
|
|
"""Hunyuan Secret Key"""
|
|
region: Literal["ap-guangzhou", "ap-beijing"] = "ap-guangzhou"
|
|
"""The region of hunyuan service."""
|
|
embedding_ctx_length: int = 1024
|
|
"""The max embedding context length of hunyuan embedding (defaults to 1024)."""
|
|
show_progress_bar: bool = False
|
|
"""Show progress bar when embedding. Default is False."""
|
|
|
|
client: Any = Field(default=None, exclude=True)
|
|
"""The tencentcloud client."""
|
|
request_cls: Optional[Type] = Field(default=None, exclude=True)
|
|
"""The request class of tencentcloud sdk."""
|
|
|
|
@model_validator(mode="before")
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["hunyuan_secret_id"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"hunyuan_secret_id",
|
|
"HUNYUAN_SECRET_ID",
|
|
)
|
|
)
|
|
values["hunyuan_secret_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"hunyuan_secret_key",
|
|
"HUNYUAN_SECRET_KEY",
|
|
)
|
|
)
|
|
|
|
try:
|
|
from tencentcloud.common.credential import Credential
|
|
from tencentcloud.common.profile.client_profile import ClientProfile
|
|
from tencentcloud.hunyuan.v20230901.hunyuan_client import HunyuanClient
|
|
from tencentcloud.hunyuan.v20230901.models import GetEmbeddingRequest
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import tencentcloud sdk python package. Please install it "
|
|
'with `pip install "tencentcloud-sdk-python>=3.0.1139"`.'
|
|
)
|
|
|
|
client_profile = ClientProfile()
|
|
client_profile.httpProfile.pre_conn_pool_size = 3
|
|
|
|
credential = Credential(
|
|
values["hunyuan_secret_id"].get_secret_value(),
|
|
values["hunyuan_secret_key"].get_secret_value(),
|
|
)
|
|
|
|
values["request_cls"] = GetEmbeddingRequest
|
|
|
|
values["client"] = HunyuanClient(credential, values["region"], client_profile)
|
|
return values
|
|
|
|
def _embed_text(self, text: str) -> List[float]:
|
|
if self.request_cls is None:
|
|
raise AssertionError("Request class is not initialized.")
|
|
request = self.request_cls()
|
|
request.Input = text
|
|
|
|
response = self.client.GetEmbedding(request)
|
|
|
|
_response: Dict[str, Any] = json.loads(response.to_json_string())
|
|
|
|
data: Optional[List[Dict[str, Any]]] = _response.get("Data")
|
|
if not data:
|
|
raise RuntimeError("Occur hunyuan embedding error: Data is empty")
|
|
|
|
embedding = data[0].get("Embedding")
|
|
if not embedding:
|
|
raise RuntimeError("Occur hunyuan embedding error: Embedding is empty")
|
|
|
|
return embedding
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed search docs."""
|
|
embeddings = []
|
|
if self.show_progress_bar:
|
|
try:
|
|
from tqdm import tqdm
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Package tqdm must be installed if show_progress_bar=True. "
|
|
"Please install with 'pip install tqdm' or set "
|
|
"show_progress_bar=False."
|
|
) from e
|
|
_iter = tqdm(iterable=texts, desc="Hunyuan Embedding")
|
|
else:
|
|
_iter = texts
|
|
for text in _iter:
|
|
embeddings.append(self.embed_query(text))
|
|
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed query text."""
|
|
return self._embed_text(text)
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Asynchronous Embed search docs."""
|
|
return await run_in_executor(None, self.embed_documents, texts)
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
"""Asynchronous Embed query text."""
|
|
return await run_in_executor(None, self.embed_query, text)
|