mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 04:16:02 +00:00
- **Description:** `embed_documents` and `embed_query` was throwing off the error as stated in the issue. The issue was that `Llama` client is returning the embeddings in a nested list which is not being accounted for in the current implementation and therefore the stated error is being raised. - **Issue:** #28813 --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
146 lines
4.8 KiB
Python
146 lines
4.8 KiB
Python
from typing import Any, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
|
from typing_extensions import Self
|
|
|
|
|
|
class LlamaCppEmbeddings(BaseModel, Embeddings):
|
|
"""llama.cpp embedding models.
|
|
|
|
To use, you should have the llama-cpp-python library installed, and provide the
|
|
path to the Llama model as a named parameter to the constructor.
|
|
Check out: https://github.com/abetlen/llama-cpp-python
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import LlamaCppEmbeddings
|
|
llama = LlamaCppEmbeddings(model_path="/path/to/model.bin")
|
|
"""
|
|
|
|
client: Any = None #: :meta private:
|
|
model_path: str = Field(default="")
|
|
|
|
n_ctx: int = Field(512, alias="n_ctx")
|
|
"""Token context window."""
|
|
|
|
n_parts: int = Field(-1, alias="n_parts")
|
|
"""Number of parts to split the model into.
|
|
If -1, the number of parts is automatically determined."""
|
|
|
|
seed: int = Field(-1, alias="seed")
|
|
"""Seed. If -1, a random seed is used."""
|
|
|
|
f16_kv: bool = Field(False, alias="f16_kv")
|
|
"""Use half-precision for key/value cache."""
|
|
|
|
logits_all: bool = Field(False, alias="logits_all")
|
|
"""Return logits for all tokens, not just the last token."""
|
|
|
|
vocab_only: bool = Field(False, alias="vocab_only")
|
|
"""Only load the vocabulary, no weights."""
|
|
|
|
use_mlock: bool = Field(False, alias="use_mlock")
|
|
"""Force system to keep model in RAM."""
|
|
|
|
n_threads: Optional[int] = Field(None, alias="n_threads")
|
|
"""Number of threads to use. If None, the number
|
|
of threads is automatically determined."""
|
|
|
|
n_batch: Optional[int] = Field(512, alias="n_batch")
|
|
"""Number of tokens to process in parallel.
|
|
Should be a number between 1 and n_ctx."""
|
|
|
|
n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers")
|
|
"""Number of layers to be loaded into gpu memory. Default None."""
|
|
|
|
verbose: bool = Field(True, alias="verbose")
|
|
"""Print verbose output to stderr."""
|
|
|
|
device: Optional[str] = Field(None, alias="device")
|
|
"""Device type to use and pass to the model"""
|
|
|
|
model_config = ConfigDict(
|
|
extra="forbid",
|
|
protected_namespaces=(),
|
|
)
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
"""Validate that llama-cpp-python library is installed."""
|
|
model_path = self.model_path
|
|
model_param_names = [
|
|
"n_ctx",
|
|
"n_parts",
|
|
"seed",
|
|
"f16_kv",
|
|
"logits_all",
|
|
"vocab_only",
|
|
"use_mlock",
|
|
"n_threads",
|
|
"n_batch",
|
|
"verbose",
|
|
"device",
|
|
]
|
|
model_params = {k: getattr(self, k) for k in model_param_names}
|
|
# For backwards compatibility, only include if non-null.
|
|
if self.n_gpu_layers is not None:
|
|
model_params["n_gpu_layers"] = self.n_gpu_layers
|
|
|
|
if not self.client:
|
|
try:
|
|
from llama_cpp import Llama
|
|
|
|
self.client = Llama(model_path, embedding=True, **model_params)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import llama-cpp-python library. "
|
|
"Please install the llama-cpp-python library to "
|
|
"use this embedding model: pip install llama-cpp-python"
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
f"Could not load Llama model from path: {model_path}. "
|
|
f"Received error {e}"
|
|
)
|
|
|
|
return self
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed a list of documents using the Llama model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
embeddings = self.client.create_embedding(texts)
|
|
final_embeddings = []
|
|
for e in embeddings["data"]:
|
|
try:
|
|
if isinstance(e["embedding"][0], list):
|
|
for data in e["embedding"]:
|
|
final_embeddings.append(list(map(float, data)))
|
|
else:
|
|
final_embeddings.append(list(map(float, e["embedding"])))
|
|
except (IndexError, TypeError):
|
|
final_embeddings.append(list(map(float, e["embedding"])))
|
|
return final_embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using the Llama model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
embedding = self.client.embed(text)
|
|
if not isinstance(embedding, list):
|
|
return list(map(float, embedding))
|
|
else:
|
|
return list(map(float, embedding[0]))
|