mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 20:05:58 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
202 lines
6.0 KiB
Python
202 lines
6.0 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _create_retry_decorator() -> Callable[[Any], Any]:
|
|
"""Returns a tenacity retry decorator."""
|
|
|
|
multiplier = 1
|
|
min_seconds = 1
|
|
max_seconds = 4
|
|
max_retries = 6
|
|
|
|
return retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(max_retries),
|
|
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)
|
|
|
|
|
|
def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
retry_decorator = _create_retry_decorator()
|
|
|
|
@retry_decorator
|
|
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
|
|
return embeddings.embed(*args, **kwargs)
|
|
|
|
return _embed_with_retry(*args, **kwargs)
|
|
|
|
|
|
class MiniMaxEmbeddings(BaseModel, Embeddings):
|
|
"""MiniMax embedding model integration.
|
|
|
|
Setup:
|
|
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and
|
|
``MINIMAX_API_KEY`` set with your API token.
|
|
|
|
.. code-block:: bash
|
|
|
|
export MINIMAX_API_KEY="your-api-key"
|
|
export MINIMAX_GROUP_ID="your-group-id"
|
|
|
|
Key init args — completion params:
|
|
model: Optional[str]
|
|
Name of ZhipuAI model to use.
|
|
api_key: Optional[str]
|
|
Automatically inferred from env var `MINIMAX_GROUP_ID` if not provided.
|
|
group_id: Optional[str]
|
|
Automatically inferred from env var `MINIMAX_GROUP_ID` if not provided.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import MiniMaxEmbeddings
|
|
|
|
embed = MiniMaxEmbeddings(
|
|
model="embo-01",
|
|
# api_key="...",
|
|
# group_id="...",
|
|
# other
|
|
)
|
|
|
|
Embed single text:
|
|
.. code-block:: python
|
|
|
|
input_text = "The meaning of life is 42"
|
|
embed.embed_query(input_text)
|
|
|
|
.. code-block:: python
|
|
|
|
[0.03016241, 0.03617699, 0.0017198119, -0.002061239, -0.00029994643, -0.0061320597, -0.0043635326, ...]
|
|
|
|
Embed multiple text:
|
|
.. code-block:: python
|
|
|
|
input_texts = ["This is a test query1.", "This is a test query2."]
|
|
embed.embed_documents(input_texts)
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
[-0.0021588828, -0.007608119, 0.029349545, -0.0038194496, 0.008031177, -0.004529633, -0.020150753, ...],
|
|
[ -0.00023150232, -0.011122423, 0.016930554, 0.0083089275, 0.012633711, 0.019683322, -0.005971041, ...]
|
|
]
|
|
""" # noqa: E501
|
|
|
|
endpoint_url: str = "https://api.minimax.chat/v1/embeddings"
|
|
"""Endpoint URL to use."""
|
|
model: str = "embo-01"
|
|
"""Embeddings model name to use."""
|
|
embed_type_db: str = "db"
|
|
"""For embed_documents"""
|
|
embed_type_query: str = "query"
|
|
"""For embed_query"""
|
|
|
|
minimax_group_id: Optional[str] = Field(default=None, alias="group_id")
|
|
"""Group ID for MiniMax API."""
|
|
minimax_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
"""API Key for MiniMax API."""
|
|
|
|
model_config = ConfigDict(
|
|
populate_by_name=True,
|
|
extra="forbid",
|
|
)
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that group id and api key exists in environment."""
|
|
minimax_group_id = get_from_dict_or_env(
|
|
values, ["minimax_group_id", "group_id"], "MINIMAX_GROUP_ID"
|
|
)
|
|
minimax_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values, ["minimax_api_key", "api_key"], "MINIMAX_API_KEY"
|
|
)
|
|
)
|
|
values["minimax_group_id"] = minimax_group_id
|
|
values["minimax_api_key"] = minimax_api_key
|
|
return values
|
|
|
|
def embed(
|
|
self,
|
|
texts: List[str],
|
|
embed_type: str,
|
|
) -> List[List[float]]:
|
|
payload = {
|
|
"model": self.model,
|
|
"type": embed_type,
|
|
"texts": texts,
|
|
}
|
|
|
|
# HTTP headers for authorization
|
|
headers = {
|
|
"Authorization": f"Bearer {self.minimax_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
params = {
|
|
"GroupId": self.minimax_group_id,
|
|
}
|
|
|
|
# send request
|
|
response = requests.post(
|
|
self.endpoint_url, params=params, headers=headers, json=payload
|
|
)
|
|
parsed_response = response.json()
|
|
|
|
# check for errors
|
|
if parsed_response["base_resp"]["status_code"] != 0:
|
|
raise ValueError(
|
|
f"MiniMax API returned an error: {parsed_response['base_resp']}"
|
|
)
|
|
|
|
embeddings = parsed_response["vectors"]
|
|
|
|
return embeddings
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a MiniMax embedding endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db)
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a MiniMax embedding endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
embeddings = embed_with_retry(
|
|
self, texts=[text], embed_type=self.embed_type_query
|
|
)
|
|
return embeddings[0]
|