mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 04:16:02 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
71 lines
2.3 KiB
Python
71 lines
2.3 KiB
Python
from typing import Any, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
|
|
class ModelScopeEmbeddings(BaseModel, Embeddings):
|
|
"""ModelScopeHub embedding models.
|
|
|
|
To use, you should have the ``modelscope`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import ModelScopeEmbeddings
|
|
model_id = "damo/nlp_corom_sentence-embedding_english-base"
|
|
embed = ModelScopeEmbeddings(model_id=model_id, model_revision="v1.0.0")
|
|
"""
|
|
|
|
embed: Any = None
|
|
model_id: str = "damo/nlp_corom_sentence-embedding_english-base"
|
|
"""Model name to use."""
|
|
model_revision: Optional[str] = None
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
"""Initialize the modelscope"""
|
|
super().__init__(**kwargs)
|
|
try:
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import some python packages."
|
|
"Please install it with `pip install modelscope`."
|
|
) from e
|
|
self.embed = pipeline(
|
|
Tasks.sentence_embedding,
|
|
model=self.model_id,
|
|
model_revision=self.model_revision,
|
|
)
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using a modelscope embedding model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
|
inputs = {"source_sentence": texts}
|
|
embeddings = self.embed(input=inputs)["text_embedding"]
|
|
return embeddings.tolist()
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using a modelscope embedding model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
text = text.replace("\n", " ")
|
|
inputs = {"source_sentence": [text]}
|
|
embedding = self.embed(input=inputs)["text_embedding"][0]
|
|
return embedding.tolist()
|