mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-29 20:35:43 +00:00
- **Description:** change to do the batch embedding server side and not client side - **Twitter handle:** @wildagsx --------- Co-authored-by: ccurme <chester.curme@gmail.com>
116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
import json
|
|
import logging
|
|
import time
|
|
from typing import Any, List
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OVHCloudEmbeddings(BaseModel, Embeddings):
|
|
"""
|
|
OVHcloud AI Endpoints Embeddings.
|
|
"""
|
|
|
|
""" OVHcloud AI Endpoints Access Token"""
|
|
access_token: str = ""
|
|
|
|
""" OVHcloud AI Endpoints model name for embeddings generation"""
|
|
model_name: str = ""
|
|
|
|
""" OVHcloud AI Endpoints region"""
|
|
region: str = "kepler"
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
if self.access_token == "":
|
|
raise ValueError("Access token is required for OVHCloud embeddings.")
|
|
if self.model_name == "":
|
|
raise ValueError("Model name is required for OVHCloud embeddings.")
|
|
if self.region == "":
|
|
raise ValueError("Region is required for OVHCloud embeddings.")
|
|
|
|
def _generate_embedding(self, text: str) -> List[float]:
|
|
"""Generate embeddings from OVHCLOUD AIE.
|
|
Args:
|
|
text (str): The text to embed.
|
|
Returns:
|
|
List[float]: Embeddings for the text.
|
|
"""
|
|
|
|
return self._send_request_to_ai_endpoints("text/plain", text, "text2vec")
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed a list of documents.
|
|
Args:
|
|
texts (List[str]): The list of texts to embed.
|
|
|
|
Returns:
|
|
List[List[float]]: List of embeddings, one for each input text.
|
|
|
|
"""
|
|
|
|
return self._send_request_to_ai_endpoints(
|
|
"application/json", json.dumps(texts), "batch_text2vec"
|
|
)
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a single query text.
|
|
Args:
|
|
text (str): The text to embed.
|
|
Returns:
|
|
List[float]: Embeddings for the text.
|
|
"""
|
|
return self._generate_embedding(text)
|
|
|
|
def _send_request_to_ai_endpoints(
|
|
self, contentType: str, payload: str, route: str
|
|
) -> Any:
|
|
"""Send a HTTPS request to OVHcloud AI Endpoints
|
|
Args:
|
|
contentType (str): The content type of the request, application/json or text/plain.
|
|
payload (str): The payload of the request.
|
|
route (str): The route of the request, batch_text2vec or text2vec.
|
|
""" # noqa: E501
|
|
headers = {
|
|
"content-type": contentType,
|
|
"Authorization": f"Bearer {self.access_token}",
|
|
}
|
|
|
|
session = requests.session()
|
|
while True:
|
|
response = session.post(
|
|
(
|
|
f"https://{self.model_name}.endpoints.{self.region}"
|
|
f".ai.cloud.ovh.net/api/{route}"
|
|
),
|
|
headers=headers,
|
|
data=payload,
|
|
)
|
|
if response.status_code != 200:
|
|
if response.status_code == 429:
|
|
"""Rate limit exceeded, wait for reset"""
|
|
reset_time = int(response.headers.get("RateLimit-Reset", 0))
|
|
logger.info("Rate limit exceeded. Waiting %d seconds.", reset_time)
|
|
if reset_time > 0:
|
|
time.sleep(reset_time)
|
|
continue
|
|
else:
|
|
"""Rate limit reset time has passed, retry immediately"""
|
|
continue
|
|
if response.status_code == 401:
|
|
""" Unauthorized, retry with new token """
|
|
raise ValueError("Unauthorized, retry with new token")
|
|
""" Handle other non-200 status codes """
|
|
raise ValueError(
|
|
"Request failed with status code: {status_code}, {text}".format(
|
|
status_code=response.status_code, text=response.text
|
|
)
|
|
)
|
|
return response.json()
|