mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-28 20:05:58 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
129 lines
4.1 KiB
Python
129 lines
4.1 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from pydantic import BaseModel, Field, model_validator
|
|
|
|
|
|
class ZhipuAIEmbeddings(BaseModel, Embeddings):
|
|
"""ZhipuAI embedding model integration.
|
|
|
|
Setup:
|
|
|
|
To use, you should have the ``zhipuai`` python package installed, and the
|
|
environment variable ``ZHIPU_API_KEY`` set with your API KEY.
|
|
|
|
More instructions about ZhipuAi Embeddings, you can get it
|
|
from https://open.bigmodel.cn/dev/api#vector
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U zhipuai
|
|
export ZHIPU_API_KEY="your-api-key"
|
|
|
|
Key init args — completion params:
|
|
model: Optional[str]
|
|
Name of ZhipuAI model to use.
|
|
api_key: str
|
|
Automatically inferred from env var `ZHIPU_API_KEY` if not provided.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import ZhipuAIEmbeddings
|
|
|
|
embed = ZhipuAIEmbeddings(
|
|
model="embedding-2",
|
|
# api_key="...",
|
|
)
|
|
|
|
Embed single text:
|
|
.. code-block:: python
|
|
|
|
input_text = "The meaning of life is 42"
|
|
embed.embed_query(input_text)
|
|
|
|
.. code-block:: python
|
|
|
|
[-0.003832892, 0.049372625, -0.035413884, -0.019301128, 0.0068899863, 0.01248398, -0.022153955, 0.006623926, 0.00778216, 0.009558191, ...]
|
|
|
|
|
|
Embed multiple text:
|
|
.. code-block:: python
|
|
|
|
input_texts = ["This is a test query1.", "This is a test query2."]
|
|
embed.embed_documents(input_texts)
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
[0.0083934665, 0.037985895, -0.06684559, -0.039616987, 0.015481004, -0.023952313, ...],
|
|
[-0.02713102, -0.005470169, 0.032321047, 0.042484466, 0.023290444, 0.02170547, ...]
|
|
]
|
|
""" # noqa: E501
|
|
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
model: str = Field(default="embedding-2")
|
|
"""Model name"""
|
|
api_key: str
|
|
"""Automatically inferred from env var `ZHIPU_API_KEY` if not provided."""
|
|
dimensions: Optional[int] = None
|
|
"""The number of dimensions the resulting output embeddings should have.
|
|
|
|
Only supported in `embedding-3` and later models.
|
|
"""
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict) -> Any:
|
|
"""Validate that auth token exists in environment."""
|
|
values["api_key"] = get_from_dict_or_env(values, "api_key", "ZHIPUAI_API_KEY")
|
|
try:
|
|
from zhipuai import ZhipuAI
|
|
|
|
values["client"] = ZhipuAI(api_key=values["api_key"])
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import zhipuai python package."
|
|
"Please install it with `pip install zhipuai`."
|
|
)
|
|
return values
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""
|
|
Embeds a text using the AutoVOT algorithm.
|
|
|
|
Args:
|
|
text: A text to embed.
|
|
|
|
Returns:
|
|
Input document's embedded list.
|
|
"""
|
|
resp = self.embed_documents([text])
|
|
return resp[0]
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""
|
|
Embeds a list of text documents using the AutoVOT algorithm.
|
|
|
|
Args:
|
|
texts: A list of text documents to embed.
|
|
|
|
Returns:
|
|
A list of embeddings for each document in the input list.
|
|
Each embedding is represented as a list of float values.
|
|
"""
|
|
if self.dimensions is not None:
|
|
resp = self.client.embeddings.create(
|
|
model=self.model,
|
|
input=texts,
|
|
dimensions=self.dimensions,
|
|
)
|
|
else:
|
|
resp = self.client.embeddings.create(model=self.model, input=texts)
|
|
embeddings = [r.embedding for r in resp.data]
|
|
return embeddings
|